Skip to main content
Log in

Superconvergence and Postprocessing of Collocation Methods for Fractional Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper aims to propose a complete superconvergence analysis for a postprocessing technique based on collocation methods for fractional differential equations (FDEs). We start with the simple linear FDEs with Caputo derivative of order \(0<\alpha <1\). The problem is reformulated as a weakly singular Volterra integral equation (VIE), and based on the resolvent theory of VIEs, the existence, uniqueness and regularity for the exact solution for the original FDE are obtained. Then the piecewise polynomial collocation method is adopted to solve the reformulated VIE, and based on the regularity of the original FDE, the convergence for the collocation method and the superconvergence for the iterated collocation method are investigated in detail, respectively. Further, based on the obtained collocation solution, the interpolation postprocessing approximation of higher accuracy is constructed on graded mesh, and the superconvergence is obtained. Compared with classical iterated collocation method, the cost on computation of interpolation postprocessing technique is less. Numerical experiments are given to illustrate the theoretical results, and it is also shown that the proposed postprocessing technique can be extended to certain nonlinear and systems of FDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable as no datasets were generated or analyzed to carried out this research.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind, vol. 4. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  3. Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45(172), 417–437 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Brunner, H.: Volterra Integral Equations, vol. 30. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  6. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diethelm, K.: The Analysis of Fractional Differential Equations, vol. 2004. Springer, Berlin (2010)

    MATH  Google Scholar 

  9. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Luchko, Y.: Fractional-order viscoelasticity (FOV): constitutive development using the fractional calculus: first annual report (2003)

  11. Ford, N.J., Morgado, M.L.: Fractional boundary value problems: analysis and numerical methods. Fract. Calc. Appl. Anal. 14(4), 554–567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Q., Wang, M.: Superconvergence of interpolated collocation solutions for weakly singular Volterra integral equations of the second kind. Comput. Appl. Math. 40(3), 1–18 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value problem. BIT 55(4), 1105–1123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kopteva, N., Stynes, M.: A posteriori error analysis for variable-coefficient multiterm time-fractional subdiffusion equations. J. Sci. Comput. 92(2), 1–23 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, M., Huang, C., Zhao, Y.: Fast conservative numerical algorithm for the coupled fractional Klein–Gordon–Schrödinger equation. Numer. Algorithms 84(3), 1081–1119 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, H., Brunner, H.: The convergence of collocation solutions in continuous piecewise polynomial spaces for weakly singular Volterra integral equations. SIAM J. Numer. Anal. 57(4), 1875–1896 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, H., Stynes, M.: Collocation methods for general Caputo two-point boundary value problems. J. Sci. Comput. 76(1), 390–425 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pedas, A., Tamme, E.: Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 255, 216–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny, I.: Fractional-order systems and \(PI^\lambda D^\mu \)-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284(1–4), 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  25. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vikerpuur, M.: Two collocation type methods for fractional differential equations with non-local boundary conditions. Math. Model. Anal. 22(5), 654–670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, D., Zou, J.: Mittag-Leffler stability of numerical solutions to time fractional ODEs. Numer. Algorithms 92(4), 2125–2159 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55–A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52(6), 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal. 58(1), 330–352 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the National Natural Science Foundation of China (No. 12171122), Guangdong Provincial Natural Science Foundation of China (2023A1515010818), Fundamental Research Project of Shenzhen (No. JCYJ20190806143201649) and Shenzhen Science and Technology Program (No. RCJC20210609103755110).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liang, H. Superconvergence and Postprocessing of Collocation Methods for Fractional Differential Equations. J Sci Comput 97, 29 (2023). https://doi.org/10.1007/s10915-023-02339-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02339-7

Keywords

Mathematics Subject Classification

Navigation