Skip to main content
Log in

Split S-ROCK Methods for High-Dimensional Stochastic Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose explicit stochastic Runge–Kutta (RK) methods for high-dimensional Itô stochastic differential equations. By providing a linear error analysis and utilizing a Strang splitting-type approach, we construct them on the basis of orthogonal Runge–Kutta–Chebyshev methods of order 2. Our methods are of weak order 2 and have high computational accuracy for relatively large time-step size, as well as good stability properties. In addition, we take stochastic exponential RK methods of weak order 2 as competitors, and deal with implementation issues on Krylov subspace projection techniques for them. We carry out numerical experiments on a variety of linear and nonlinear problems to check the computational performance of the methods. As a result, it is shown that the proposed methods can be very effective on high-dimensional problems whose drift term has eigenvalues lying near the negative real axis and whose diffusion term does not have very large noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data and program codes are available in https://github.com/yosh-komori/supplementary_info_files_2023.

Notes

  1. https://www.epfl.ch/labs/anmc/software/.

  2. For an implementation of the methods, we utilize the parameter values in a Fortran code, rectp.f, obtained from http://anmc.epfl.ch/Pdf/srock2.zip.

References

  1. Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 30(2), 997–1014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Li, T.: S-ROCK methods for stiff Itô SDEs. Commun. Math. Sci. 6(4), 845–868 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulle, A., Medovikov, A.A.: Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90, 1–18 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdulle, A., Vilmart, G., Zygalakis, K.C.: Weak second order explicit stabilized methods for stiff stochastic differential equations. SIAM J. Sci. Comput. 35(4), A1792–A1814 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdulle, A., Almuslimani, I., Vilmart, G.: Optimal explicit stabilized integrator of weak order 1 for stiff and ergodic stochastic differential equations. SIAM/ASA J. Uncertain. Quantif. 6(2), 937–964 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. 31(3), 970–989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold, L.: Stochastic Differential Equations: Theory and Applications. John Wiley & Sons, New York (1974)

    MATH  Google Scholar 

  8. Brzeźniak, Z., Goldys, B., Neklyudov, M.: Multidimensional stochastic Burgers equation. SIAM J. Math. Anal. 46(1), 871–889 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, D.: On the numerical discretisation of stochastic oscillators. Math. Comput. Simul. 82(8), 1478–1495 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, D., Sigg, M.: Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations. Numer. Math. 121(1), 1–29 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Debrabant, K., Kværnø, A., Mattsson, N.C.: Runge-Kutta Lawson schemes for stochastic differential equations. BIT Numer. Math. 61(2), 381–409 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Debrabant, K., Kværnø, A., Mattsson, N.C.: Lawson schemes for highly oscillatory stochastic differential equations and conservation of invariants. BIT Numer. Math. 62(4), 1121–1147 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I. Potential Anal. 9, 1–25 (1998)

    Article  MathSciNet  Google Scholar 

  14. Erdoğan, U., Lord, G.J.: A new class of exponential integrators for SDEs with multiplicative noise. IMA J. Appl. Math. 39(2), 820–846 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ibáñez, J., Alonso, J.M., Alonso-Jordá, P., Defez, E., Sastre, J.: Two Taylor algorithms for computing the action of the matrix exponential on a vector. Algorithms 15(2), 48 (2022)

    Article  Google Scholar 

  19. Kamm, K., Pagliarani, S., Pascucci, A.: Numerical solution of kinetic SPDEs via stochastic Magnus expansion. Math. Comput. Simul. 207, 189–208 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin (1999). (Corrected Third Printing)

    MATH  Google Scholar 

  21. Komori, Y., Burrage, K.: Weak second order S-ROCK methods for Stratonovich stochastic differential equations. J. Comput. Appl. Math. 236(11), 2895–2908 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Komori, Y., Burrage, K.: A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems. BIT 54(4), 1067–1085 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Komori, Y., Cohen, D., Burrage, K.: Weak second order explicit exponential Runge-Kutta methods for stochastic differential equations. SIAM J. Sci. Comput. 39(6), A2857–A2878 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  25. Milstein, G.N.: Weak approximation of solutions of systems of stochastic differential equations. Theory Probab. Appl. 30(4), 750–766 (1986)

    Article  MathSciNet  Google Scholar 

  26. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer-Verlag, Berlin (2004)

    Book  MATH  Google Scholar 

  27. Moler, C., Loan, C.V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998)

    Article  MATH  Google Scholar 

  29. Tocino, A., Senosiain, M.J.: Mean-square stability analysis of numerical schemes for stochastic differential systems. J. Comput. Appl. Math. 236(10), 2660–2672 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. van der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit, \(m\)-stage Runge-Kutta methods for large \(m\)-values. ZAMM Z. Angew. Math. Mech. 60, 479–485 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, G., Burrage, K., Burrage, P., Ding, X.: How to choose an appropriate initial condition to simulate stochastic differential equations stably. In: AIP Conference Proceedings (to appear)

  32. Yang, G., Burrage, K., Komori, Y., Burrage, P.M., Ding, X.: A class of new Magnus-type methods for semi-linear non-commutative Itô stochastic differential equations. Numer. Algorithms 88(4), 1641–1665 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank referees, Professor Chi-Wang Shu and Professor David Cohen for their comments which helped to improve the earlier versions of this paper.

Funding

This work was partially supported by JSPS Grant-in-Aid for Scientific Research 17K05369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Komori.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komori, Y., Burrage, K. Split S-ROCK Methods for High-Dimensional Stochastic Differential Equations. J Sci Comput 97, 62 (2023). https://doi.org/10.1007/s10915-023-02354-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02354-8

Keywords

Mathematics Subject Classification

Navigation