Skip to main content
Log in

Space–Time Methods Based on Isogeometric Analysis for Time-fractional Schrödinger Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a time discontinuous Galerkin scheme for solving the nonlinear time-fractional Schrödinger equation using B-splines in time and Non-Uniform Rational B-splines in space. The technique of comparing real and imaginary parts is utilized to obtain optimal \(L^2([0,T];L^2(\varOmega ))\) norm error estimate. Specifically, we have achieved \(r+1\) accuracy in time and \(p+1\) accuracy in space, where r and p represent the spline degrees in time and space, respectively. The convergence analysis is also provided on time graded mesh, taking into account solutions with initial singularity. Additionally, the space–time isogeometric analysis method is employed to solve the linear time-fractional Schrödinger equation. A new discrete norm is constructed, and the well-posedness analysis and error estimate are performed based on this norm. We can attain \(\hat{p}\) accuracy concerning the new discrete norm error in space–time domain, where \(\hat{p}\) denotes space–time spline degree. Theoretical results are validated through using numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Adams, R.A., Fournier, J.J.: Sobolev Spaces. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  2. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4(4), 729–796 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52(186), 255–274 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Bazilevs, Y., da Veiga, L.B., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Cao, W., Zhang, Z., Karniadakis, G.E.: Time-splitting schemes for fractional differential equations I: smooth solutions. SIAM J. Sci. Comput. 37(4), A1752–A1776 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Chen, L., Lü, S.: Spectral approximation for nonlinear time fractional Schrödinger equation on graded meshes. Int. J. Comput. Math. 99(12), 2524–2541 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schemes for nonlinear time-fractional Schrödinger equations. Appl. Math. Lett. 84, 160–167 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Wang, L., Yi, L.: Exponential convergence of \(hp\)-discontinuous Galerkin method for nonlinear Caputo fractional differential equations. J. Sci. Comput. 92(3), 99 (2022)

    MathSciNet  MATH  Google Scholar 

  9. De Falco, C., Reali, A., Vázquez, R.: GeoPDEs: a research tool for isogeometric analysis of PDEs. Adv. Eng. Softw. 42(12), 1020–1034 (2011)

    MATH  Google Scholar 

  10. Dedè, L., Quarteroni, A.: Isogeometric analysis for second order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 284, 807–834 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Duan, B., Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Space–time Petrov–Galerkin FEM for fractional diffusion problems. Comput. Methods Appl. Math. 18(1), 1–20 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Gander, M.J.: 50 years of time parallel time integration. In: Multiple Shooting and Time Domain Decomposition Methods. Contributions in Mathematical and Computational Sciences, vol. 9, pp. 69–113. Springer, Cham (2015)

  13. Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys. 18(9), 1794–1797 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Engrg. 197(49–50), 4333–4352 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Heid, P., Wihler, T.P.: Adaptive iterative linearization Galerkin methods for nonlinear problems. Math. Comput. 89(326), 2707–2734 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Heid, P., Wihler, T.P.: On the convergence of adaptive iterative linearized Galerkin methods. Calcolo 57(3), 24 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Hu, X., Zhu, S.: Isogeometric analysis for time-fractional partial differential equations. Numer. Algorithms 85(3), 909–930 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Huang, C., Stynes, M.: Optimal \(H^1\) spatial convergence of a fully discrete finite element method for the time-fractional Allen–Cahn equation. Adv. Comput. Math. 46(4), 63 (2020)

    MATH  Google Scholar 

  19. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Iomin, A.: Fractional-time Schrödinger equation: fractional dynamics on a comb. Chaos Solit. Fractals 44(4–5), 348–352 (2011)

    MATH  Google Scholar 

  21. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479–499 (1998)

    MATH  Google Scholar 

  23. Keraani, S.: On the blow up phenomenon of the critical nonlinear Schrödinger equation. J. Funct. Anal. 235(1), 171–192 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Khan, N.A., Hameed, T.: An implementation of Haar wavelet based method for numerical treatment of time-fractional Schrödinger and coupled Schrödinger systems. IEEE/CAA J. Autom. Sin. 6(1), 177–187 (2019)

    MathSciNet  Google Scholar 

  25. Langer, U., Steinbach, O.: Space–Time Methods: Applications to Partial Differential Equations, vol. 25. Walter de Gruyter GmbH & Co KG (2019)

  26. Langer, U., Schafelner, A.: Adaptive space–time finite element methods for non-autonomous parabolic problems with distributional sources. Comput. Methods Appl. Math. 20(4), 677–693 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Langer, U., Schafelner, A.: Adaptive space–time finite element methods for parabolic optimal control problems. J. Numer. Math. 30(4), 247–266 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Langer, U., Moore, S.E., Neumüller, M.: Space–time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Larsson, S., Thomée, V., Wahlbin, L.B.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comput. 67(221), 45–71 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Lasaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Mathematics Research Center, University of Wisconsin-Madison, Academic Press, New York (1974)

  31. Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    MATH  Google Scholar 

  32. Li, D., Zhang, J., Zhang, Z.: The numerical computation of the time fractional Schrödinger equation on an unbounded domain. Comput. Methods Appl. Math. 18(1), 77–94 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Li, R., Wu, Q., Zhu, S.: Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection–diffusion–reaction problems. J. Comput. Phys. 387, 280–302 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Li, R., Wu, Q., Zhu, S.: Isogeometric analysis with proper orthogonal decomposition for elastodynamics. Commun. Comput. Phys. 30(2), 396–422 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Liu, J., Wang, T., Zhang, T.: A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer. Algorithms 92(2), 1153–1182 (2023)

    MathSciNet  MATH  Google Scholar 

  36. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105(3), 481–510 (2007)

    MathSciNet  MATH  Google Scholar 

  37. McLean, W., Thomée, V., Wahlbin, L.B.: Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69(1), 49–69 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. (2) 161(1), 157–222 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Moore, S.E.: Space-time multipatch discontinuous Galerkin isogeometric analysis for parabolic evolution problems. SIAM J. Numer. Anal. 57(3), 1471–1493 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Mustapha, K.: A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels. Math. Comput. 82(284), 1987–2005 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130(3), 497–516 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Mustapha, K., Schötzau, D.: Well-posedness of \(hp\)-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34(4), 1426–1446 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Mustapha, K., Brunner, H., Mustapha, H., Schötzau, D.: An \(hp\)-version discontinuous Galerkin method for integro-differential equations of parabolic type. SIAM J. Numer. Anal. 49(4), 1369–1396 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Mustapha, K., Abdallah, B., Furati, K.M., Nour, M.: A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients. Numer. Algorithms 73(2), 517–534 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Peng, L., Zhou, Y., Ahmad, B.: The well-posedness for fractional nonlinear Schrödinger equations. Comput. Math. Appl. 77(7), 1998–2005 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Piegl, L., Tiller, W.: The NURBS Book. Springer Science & Business Media, Berlin (1996)

    MATH  Google Scholar 

  48. Saadé, C., Lejeunes, S., Eyheramendy, D., Saad, R.: Space-time isogeometric analysis for linear and non-linear elastodynamics. Comput. Struct. 254, 106594 (2021)

    Google Scholar 

  49. Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  50. Sun, Z.Z.: The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 219(2), 879–898 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Sun, Z.Z., Zhang, J., Zhang, Z.: Optimal error estimates in numerical solution of time fractional Schrödinger equations on unbounded domains. East Asian J. Appl. Math. 8(4), 634–655 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Tagliabue, A., Dedè, L., Quarteroni, A.: Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics. Comput. Fluids 102, 277–303 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer Science & Business Media, Berlin (2007)

    MATH  Google Scholar 

  54. Tofighi, A.: Probability structure of time fractional schrödinger equation. Acta Phys. Polo. A. 116(2), 114–118 (2009)

    Google Scholar 

  55. Valizadeh, N., Rabczuk, T.: Isogeometric analysis for phase-field models of geometric PDEs and high-order PDEs on stationary and evolving surfaces. Comput. Methods Appl. Mech. Engrg. 351, 599–642 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Vázquez, R.: A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0. Comput. Math. Appl. 72(3), 523–554 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Wang, L., Tian, H., Yi, L.: An \(hp\)-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels. Appl. Numer. Math. 161, 218–232 (2021)

    MathSciNet  MATH  Google Scholar 

  58. Wang, Y., Wang, G., Bu, L., Mei, L.: Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer. Algorithms 88(1), 419–451 (2021)

    MathSciNet  MATH  Google Scholar 

  59. Yang, Y., Wang, J., Zhang, S., Tohidi, E.: Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrödinger equations. Appl. Math. Comput. 387, 124489 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Yuan, W., Li, D., Zhang, C.: Linearized transformed \(L1\) Galerkin FEMs with unconditional convergence for nonlinear time fractional Schrödinger equations. Numer. Math. Theory Methods Appl. 16(2), 348–369 (2023)

    MathSciNet  Google Scholar 

  61. Yuan, W., Zhang, C., Li, D.: Linearized fast time-stepping schemes for time-space fractional Schrödinger equations. Physica D 454, 133865 (2023)

    MATH  Google Scholar 

  62. Zhang, J., Li, D., Antoine, X.: Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain. Commun. Comput. Phys. 25(1), 218–243 (2019)

    MathSciNet  MATH  Google Scholar 

  63. Zhang, M., Mao, X., Yi, L.: Exponential convergence of the \(hp\)-version of the composite Gauss–Legendre quadrature for integrals with endpoint singularities. Appl. Numer. Math. 170, 340–352 (2021)

    MathSciNet  MATH  Google Scholar 

  64. Zheng, Y., Zhao, Z.: The time discontinuous space-time finite element method for fractional diffusion-wave equation. Appl. Numer. Math. 150, 105–116 (2020)

    MathSciNet  MATH  Google Scholar 

  65. Zhu, S., Dedè, L., Quarteroni, A.: Isogeometric analysis and proper orthogonal decomposition for parabolic problems. Numer. Math. 135(2), 333–370 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported in part by the National Natural Science Foundation of China through grant [12101509] and the third author was supported in part by the Science and Technology Development Fund, Macau SAR (File No. 0151/2022/A) and University of Macau (File Nos. MYRG2020-00035-FST, MYRG2022-00076-FST). The authors sincerely appreciate Professor Zhizhong Sun for his insightful suggestions and discussions. The authors thanks the anonymous referees for their constructive comments and suggestions which have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seakweng Vong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Auxiliary Lemmas

In this part, we will introduce several useful Lemmas about fractional operator \({_{a}}I_t^{\alpha }\).

Lemma 7

[57, Lemma 2.1] If \(\alpha < 1\) and \(q\in L^2(I_n)\), then

$$\begin{aligned} \int _{I_n}\vert {_{t_{n-1}}}I_t^{\alpha }q\vert ^2dt\le \frac{\tau _n^{2\alpha }}{\varGamma ^2(1+\alpha )}\int _{I_n}\vert q(s)\vert ^2ds,\;\;{1\le n\le N.} \end{aligned}$$

Specially, if \(q\in L^2([0,t_n])\), we have

$$\begin{aligned} \int _{0}^{t_n}\vert {_{0}}I_t^{\alpha }q\vert ^2dt\le \frac{t_n^{\alpha }}{\varGamma (1+\alpha )\varGamma (\alpha )}\int _{0}^{t_n}(t_n-t)^{\alpha -1}\int _{0}^{t}\vert q(s)\vert ^2dsdt,\;\;{1\le n\le N.} \end{aligned}$$

Lemma 8

[42, Lemma 3.1] Let real functions \(q,w\in L^2([a,b])\), then we have

  1. (i)

    \(\int _{a}^{b}q(t)\left( {_{a}}I_t^{\alpha } q\right) dt=\frac{1}{K}\Vert {_{a}}I_t^{\frac{\alpha }{2}} \tilde{q}\Vert ^2_{L^2([0,\infty ))}\);

  2. (ii)

    \(\left[ \int _{a}^{b}q(t)\left( {_{a}}I_t^{\alpha } w\right) dt\right] ^2\le K^2\left[ \int _{a}^{b}q(t)\left( {_{a}}I_t^{\alpha }q\right) dt\right] \left[ \int _{a}^{b}w(t)\left( {_{a}}I_t^{\alpha } w\right) dt\right] \),

where \(K=1/\cos (\alpha \pi /2)\) and \(\tilde{q}\) are the extension of q outside of [ab] by zero.

Lemma 9

If \(u\in L^2(I_n)\) is a complex function, it holds that

$$\begin{aligned}&\textrm{Re}\left[ \int _{I_n}u\overline{\left( {_{t_{n-1}}}I_t^{\alpha } u\right) }dt\right] \geqslant 0\;\;\;\;\text {and}\;\;\;\; \left| \textrm{Im}\left[ \int _{I_n}u\overline{\left( {_{t_{n-1}}}I_t^{\alpha } u\right) }dt\right] \right| \\&\quad \le K\textrm{Re}\left[ \int _{I_n}u\overline{\left( {_{t_{n-1}}}I_t^{\alpha } u\right) }dt\right] , \quad {1\le n\le N.} \end{aligned}$$

Proof

We assume that \(u=u_1+iu_2\), where \(u_1\) and \(u_2\) are real functions. Using the positive semi-definite property of the fractional integral \({_{a}}I_t^{\alpha }\) [36, 37], we can derive the following result:

$$\begin{aligned} \textrm{Re}\left[ \int _{I_n}u\overline{\left( {_{t_{n-1}}}I_t^{\alpha } u\right) }dt\right] = \int _{I_n}u_1\left( {_{t_{n-1}}}I_t^{\alpha } u_1\right) dt+\int _{I_n}u_2\left( {_{t_{n-1}}}I_t^{\alpha } u_2\right) dt\geqslant 0. \end{aligned}$$

Besides, according to Lemma 8 and Cauchy inequality, one can get

$$\begin{aligned} \left| \int _{I_n}u_1\left( {_{t_{n-1}}}I_t^{\alpha } u_2\right) dt\right| \le \frac{K}{2}\left[ \int _{I_n}u_1\left( {_{t_{n-1}}}I_t^{\alpha } u_1\right) dt+\int _{I_n}u_2\left( {_{t_{n-1}}}I_t^{\alpha } u_2\right) dt\right] . \end{aligned}$$
(45)

Then using triangle inequality and (45), we have

$$\begin{aligned} \left| \textrm{Im}\left[ \int _{I_n}u\overline{\left( {_{t_{n-1}}}I_t^{\alpha } u\right) }dt\right] \right|&\le \left| \int _{I_n}u_2\left( {_{t_{n-1}}}I_t^{\alpha } u_1\right) dt\right| +\left| \int _{I_n}u_1\left( {_{t_{n-1}}}I_t^{\alpha } u_2\right) dt\right| \\&\le K\textrm{Re}\left[ \int _{I_n}u\overline{\left( {_{t_{n-1}}}I_t^{\alpha } u\right) }dt\right] . \end{aligned}$$

The proof is completed. \(\square \)

The following result ensures the rationality of discrete norm defined in space–time IGA method.

Lemma 10

For complex functions \(u,v\in L^2([0,T])\), we have

$$\begin{aligned} \left\{ \textrm{Re}\left[ \int _{0}^T(u+v)\overline{{_{0}}I_t^{\alpha } (u+v)}dt\right] \right\} ^{\frac{1}{2}} \le \left\{ \textrm{Re}\left[ \int _{0}^T u\overline{\left( {_{0}}I_t^{\alpha } u\right) }dt\right] \right\} ^{\frac{1}{2}}+\left\{ \textrm{Re}\left[ \int _{0}^T v\overline{\left( {_{0}}I_t^{\alpha } v\right) }dt\right] \right\} ^{\frac{1}{2}}. \end{aligned}$$

Proof

Let us first consider the case where u and v are real functions. Using Lemma 8, one has

$$\begin{aligned} \left[ \int _{0}^T(u+v){_{0}}I_t^{\alpha } (u+v)dt\right] ^{\frac{1}{2}}&=\frac{1}{\sqrt{K}}\Vert {_{0}}I_t^{\alpha } (\tilde{u}+\tilde{v})dt\Vert _{L^2([0,\infty ))}\nonumber \\&\le \frac{1}{\sqrt{K}}\left( \Vert {_{0}}I_t^{\alpha } \tilde{u}\Vert _{L^2([0,\infty ))}+\Vert {_{0}}I_t^{\alpha } \tilde{v}\Vert _{L^2([0,\infty ))}\right) \nonumber \\&=\left[ \int _{0}^Tu\left( {_{0}}I_t^{\alpha } u\right) dt\right] ^{\frac{1}{2}}+\left[ \int _{0}^T v\left( {_{0}}I_t^{\alpha } v\right) dt\right] ^{\frac{1}{2}}, \end{aligned}$$
(46)

where \(\tilde{u}\) and \(\tilde{v}\) are the extension of u and v outside of [0, T] by zero, respectively.

Next, let us consider the case where u and v are complex functions, and set \(u=u_1+iu_2\) and \(v=v_1+iv_2\), where \(u_1\), \(u_2\), \(v_1\) and \(v_2\) are real functions. Making use of the result (46) for real functions, we have

$$\begin{aligned}&\left\{ \textrm{Re}\left[ \int _{0}^T(u+v)\overline{{_{0}}I_t^{\alpha } (u+v)}dt\right] \right\} ^{\frac{1}{2}}\\&\quad =\left[ \int _{0}^T(u_1+v_1){_{0}}I_t^{\alpha } (u_1+v_1)dt+\int _{0}^T(u_2+v_2){_{0}}I_t^{\alpha } (u_2+v_2)dt\right] ^{\frac{1}{2}}\\&\quad \le \Bigg \{\bigg \{\left[ \int _{0}^Tu_1\left( {_{0}}I_t^{\alpha } u_1\right) dt\right] ^{\frac{1}{2}}+\left[ \int _{0}^Tv_1\left( {_{0}}I_t^{\alpha } v_1\right) dt\right] ^{\frac{1}{2}}\bigg \}^2\\&\qquad +\bigg \{\left[ \int _{0}^Tu_2\left( {_{0}}I_t^{\alpha } u_2\right) dt\right] ^{\frac{1}{2}}+\left[ \int _{0}^Tv_2\left( {_{0}}I_t^{\alpha } v_2\right) dt\right] ^{\frac{1}{2}}\bigg \}^2\Bigg \}^{\frac{1}{2}}\\&\quad \le \left[ \int _{0}^Tu_1\left( {_{0}}I_t^{\alpha } u_1\right) dt+\int _{0}^Tu_2\left( {_{0}}I_t^{\alpha } u_2\right) dt\right] ^{\frac{1}{2}}\\&\qquad +\left[ \int _{0}^Tv_1\left( {_{0}}I_t^{\alpha } v_1\right) dt+\int _{0}^Tv_2\left( {_{0}}I_t^{\alpha } v_2\right) dt\right] ^{\frac{1}{2}}\\&\quad =\left\{ \textrm{Re}\left[ \int _{0}^T u\overline{\left( {_{0}}I_t^{\alpha } u\right) }dt\right] \right\} ^{\frac{1}{2}}+\left\{ \textrm{Re}\left[ \int _{0}^T v\overline{\left( {_{0}}I_t^{\alpha } v\right) }dt\right] \right\} ^{\frac{1}{2}}, \end{aligned}$$

where the last inequality is obtained by using the result \(\sqrt{(a+b)^2+(c+d)^2}\le \sqrt{a^2+c^2}+\sqrt{b^2+d^2}.\)

This proof is completed. \(\square \)

The following is a fractional Grönwall inequality.

Lemma 11

[29, Lemma 6.4] Let \(\left\{ a_n\right\} _{n=1}^{N}\) and \(\left\{ b_n\right\} _{n=1}^{N}\) be nonnegative sequences and \(\left\{ b_n\right\} _{n=1}^{N}\) is monotonically increasing. Assume that

$$\begin{aligned} a_n\le b_n +c\sum _{j=1}^{n} \omega _{n,j}(\alpha ) a_n\;\;\text {for}\;\;1\le n\le N, \end{aligned}$$

where \(c\geqslant 0\) and \(\omega _{n,j}(\alpha )=\int _{I_j}(t_n-t)^{\alpha -1}dt\). When \(0< \alpha \le 1\) and \(\delta =\frac{c \tau ^{\alpha }}{\alpha }<1\), it holds that

$$\begin{aligned} a_n\le Cb_n\;\;\text {for}\;\;1\le n\le N, \end{aligned}$$

where C is a constant related to \(\delta \), \(\alpha \), c and T.

1.2 Implementation of Space–Time Methods

Here we present algorithms for solving problems (8) and (32). For the former, our approach involves integrating first in time direction and deriving a nonlinear system of equations about spatial degrees of freedom on every time slice. We then use an Picard iteration to solve this nonlinear system, which is feasible due to the conclusion of Theorem 2. Specifically, we set the iteration termination error to be \(10^{-12}\). For the latter, we solve a sparse linear system of equations using LU decomposition technology.

Firstly, we assume that \(\left\{ B^n_{j,r_n}(t)\right\} _{j=1}^{r_n+1}\), \(\left\{ S_j(\textbf{x})\right\} _{j=1}^{K}\), \(\left\{ N_j(\textbf{x},t)\right\} _{j=1}^{W}\) form a set of basis for spaces \(\mathcal {B}^{r_n}(I_n)\), \(\mathcal {V}_{0h}(\varOmega )\) and \(\mathcal {V}_{0h}(Q)\), respectively. Then the approximation for the solution of NTFS or LTFS takes the form:

$$\begin{aligned} U(\textbf{x},t)=\sum _{j=1}^{r_n+1}P_{j,n}(\textbf{x})B^n_{j,r_n}(t)\;\;\text {and}\;\;u_h(\textbf{x},t)=\sum _{j=1}^{W}c_jN_j(\textbf{x},t), \end{aligned}$$

where \(P_{j,n}(\textbf{x})=\sum _{k=1}^{K}c^{n}_{jk}S_k(\textbf{x})\).

Furthermore, for the sake of convenience, we define

$$\begin{aligned} C_n&=\left( c^{n}_{jk}\right) _{r_n+1,K}, \;\;\textbf{P}_n=\left( P_{j,n}\right) _{r_n+1,1},\\ M_{n}&=\left( m_{jk}^{n}\right) _{r_n+1,r_n+1}\;\;\text {with}\;\;m_{jk}^{n}=\int _{I_n}B^n_{j,r_n}(t)B^n_{k,r_n}(t)dt,\\ D_{n}&=\left( d_{jk}^{n}\right) _{r_n+1,r_n+1}\;\;\text {with}\;\;d_{jk}^{n}=\frac{1}{\varGamma (\alpha )}\int _{I_n}B^n_{j,r_n}(t)\int _{t_{n-1}}^{t}(t-s)^{\alpha -1}B^n_{k,r_n}(s)dsdt,\\ H_{n}(\textbf{x},t)&=\frac{i\lambda }{\varGamma (\alpha )}\int _{t_{n-1}}^{t}(t-s)^{\alpha -1}f(U(\textbf{x},s))ds\\&\quad +\frac{i\lambda }{\varGamma (\alpha )}\sum _{m=1}^{n-1}\int _{I_m}(t-s)^{\alpha -1}f(U(\textbf{x},s))ds+u_0,\\ Y_{n}(\textbf{x},t)&=-\frac{i}{\varGamma (\alpha )}\sum _{m=1}^{n-1}\int _{I_m}(t-s)^{\alpha -1}U(\textbf{x},s)ds,\\ \textbf{L}_n&=(l_{j}^n)_{r_n+1,1},\quad \textbf{G}_n=(g_{j}^n)_{r_n+1,1},\quad \text {with}\quad l_{j}^n=\int _{I_n}B^n_{j,r_n}H_{n}dt\quad \text {and}\quad g_{j}^n\\&=\int _{I_n}B^n_{j,r_n}Y_{n}dt. \end{aligned}$$

Next, we will give the main steps to solve (8).

Algorithm 1
figure a

Solve problem (8).

When considering (32), formalism can be easily implemented as we only need to solve

$$\begin{aligned} A\textbf{c}=\textbf{f}, \end{aligned}$$

where \(A=\left( a_{jk}\right) _{W,W}\) with \(a_{jk}=a_h(N_k,N_j)\), \(\textbf{c}=\left( c_1,c_2,\ldots ,c_W\right) ^T\) and \(\textbf{f}=(f_{j})_{W,1}\) with \(f_{j}=l_h(N_j)\). For larger matrices A, we can also consider using some precondition techniques or iterative methods in parallel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, A., Shen, J. & Vong, S. Space–Time Methods Based on Isogeometric Analysis for Time-fractional Schrödinger Equation. J Sci Comput 97, 76 (2023). https://doi.org/10.1007/s10915-023-02398-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02398-w

Keywords

Mathematics Subject Classification

Navigation