Abstract
We present a family of novel explicit numerical methods for the diffusion or heat equation with Fisher, Huxley and Nagumo-type reaction terms. After discretizing the space variables as in conventional method of lines, our methods do not apply a finite difference approximation for the time derivatives, they instead combine constant- linear- and quadratic-neighbour approximations, which decouple the ordinary differential equations. In the obtained methods, the time step size appears in exponential form in the final expression with negative coefficients. In the case of the pure heat equation, the new values of the variable are convex combinations of the old values, which guarantees unconditional positivity and stability. We analytically prove that the convergence of the methods is fourth order in the time step size for linear ODE systems. We also prove that the concentration values in the case of Fisher’s and Nagumo’s equations lie within the unit interval regardless of the time step size. We construct an adaptive time step size time integrator with an extremely cheap embedded error control method. Several numerical examples are provided to demonstrate that the proposed methods work for nonlinear equations in stiff cases as well. According to the comparisons with other solvers, the new methods can have a significant advantage.
















Similar content being viewed by others
Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
References
Dattagupta, S.: Diffusion Formalism and Applications. Taylor & Francis, Milton Park (2014)
Ghez, R.: Diffusion Phenomena: Cases and Studies. Dover Publications Inc, New York (2001)
Bennett, T.: Transport by Advection and Diffusion. Wiley, New York (2012)
Pisarenko, I., Ryndin, E.: Numerical drift-diffusion simulation of GaAs p-i-n and Schottky-Barrier photodiodes for high-speed AIIIBV on-chip optical interconnections. Electronics 5(4), 52 (2016). https://doi.org/10.3390/electronics5030052
Fisher, D.J.: Defects and Diffusion in Carbon Nanotubes. Trans Tech Publications, Wollerau (2014)
Fradin, C.: On the importance of protein diffusion in biological systems: the example of the Bicoid morphogen gradient. Biochim. Biophys. Acta Proteins Proteom 1865(11), 1676–1686 (2017). https://doi.org/10.1016/j.bbapap.2017.09.002
Yu, H., et al.: The moisture diffusion equation for moisture absorption of multiphase symmetrical sandwich structures. Mathematics 10(15), 2669 (2022). https://doi.org/10.3390/math10152669
Zimmerman, R.W.: The Imperial College lectures in petroleum engineering. World Scientific Publishing, Singapore, London (2018)
Li, Y., van Heijster, P., Marangell, R., Simpson, M.J.: Travelling wave solutions in a negative nonlinear diffusion–reaction model. J. Math. Biol. 81, 1495–1522 (2020). https://doi.org/10.1007/s00285-020-01547-1
Weickenmeier, J., Jucker, M., Goriely, A., Kuhl, E.: A physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. J. Mech. Phys. Solids 124, 264–281 (2019). https://doi.org/10.1016/j.jmps.2018.10.013
Campos, D., Llebot, J.E., Fort, J.: Reaction-diffusion pulses: a combustion model. J. Phys. A. Math. Gen. 37, 6609–6621 (2004). https://doi.org/10.1088/0305-4470/37/26/001
Agbavon, K.M., Appadu, A.R.: Construction and analysis of some nonstandard finite difference methods for the FitzHugh–Nagumo equation. Numer. Methods Partial Differ. Equ. 36(5), 1145–1169 (2020). https://doi.org/10.1002/num.22468
Zhao, Y., Billings, S.A., Guo, Y., Coca, D., Dematos, L.L., Ristic, R.I.: Spatio-temporal modeling of wave formation in an excitable chemical medium based on a revised Fitzhugh-Nagumo model. Int. J. Bifurc. Chaos 21(2), 505–512 (2011). https://doi.org/10.1142/S0218127411028556
Seadawy, A.R., Rizvi, S.T.R., Ahmed, S.: Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: applications in nuclear reactor theory. Chaos Solitons Fractals 161, 112326 (2022). https://doi.org/10.1016/j.chaos.2022.112326
Appadu, A.R., Inan, B., Tijani, Y.O.: Comparative study of some numerical methods for the Burgers-Huxley equation. Symmetry (Basel) 11, 1333 (2019). https://doi.org/10.3390/sym11111333
Bradshaw-Hajek, B.: Reaction-Diffusion Equations for Population Genetics. Wollongong (2004)
Hassan, M.M., Abdel-Razek, M.A., Shoreh, A.A.H.: Explicit exact solutions of some nonlinear evolution equations with their geometric interpretations. Appl. Math. Comput. 251, 243–252 (2015). https://doi.org/10.1016/j.amc.2014.11.046
Ramos, J.I.: A review of some numerical methods for reaction-diffusion equations. Math. Comput. Simul 25(6), 538–548 (1983). https://doi.org/10.1016/0378-4754(83)90127-1
Kovács, E., Nagy, Á., Saleh, M.: A set of new stable, explicit, second order schemes for the non-stationary heat conduction equation. Mathematics 9(18), 2284 (2021). https://doi.org/10.3390/math9182284
Appau, P.O., Dankwa, O.K., Brantson, E.T.: A comparative study between finite difference explicit and implicit method for predicting pressure distribution in a petroleum reservoir. Int. J. Eng. Sci. Technol. (2019). https://doi.org/10.4314/ijest.v11i4.3
Moncorgé, A., Tchelepi, H.A., Jenny, P.: Modified sequential fully implicit scheme for compositional flow simulation. J. Comput. Phys. 337(15), 98–115 (2017). https://doi.org/10.1016/j.jcp.2017.02.032
Albert, C., Ruiz-Gironés, E., Sarrate, J.: High-order HDG formulation with fully implicit temporal schemes for the simulation of two-phase flow through porous media. Int. J. Numer. Methods Eng. (2021). https://doi.org/10.1002/nme.6674
Ramos, J.I.: Modified equation techniques for reactive-diffusive systems. Part 1: explicit, implicit and quasilinear methods. Comput. Methods Appl. Mech. Eng. 64(1–3), 195–219 (1987). https://doi.org/10.1016/0045-7825(87)90040-5
Ramos, J.I.: Linearization methods for reaction-diffusion equations: 1-D problems. Appl. Math. Comput. 88(2–3), 199–224 (1997). https://doi.org/10.1016/S0096-3003(96)00328-1
Ramos, J.I.: Linearization methods for reaction-diffusion equations: Multidimensional problems. Appl. Math. Comput. 88(2–3), 225–254 (1997). https://doi.org/10.1016/S0096-3003(96)00327-X
Manaa, S., Sabawi, M.: Numerical solution and stability analysis of huxley equation. AL-Rafidain J. Comput. Sci. Math. 2(1), 85–97 (2005). https://doi.org/10.33899/csmj.2005.164070
Kadioglu, S.Y., Knoll, D.A.: A fully second order implicit/explicit time integration technique for hydrodynamics plus nonlinear heat conduction problems. J. Comput. Phys. 229(9), 3237–3249 (2010). https://doi.org/10.1016/j.jcp.2009.12.039
Chen, H., Kou, J., Sun, S., Zhang, T.: Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media. Comput. Methods Appl. Mech. Eng. 350, 641–663 (2019). https://doi.org/10.1016/j.cma.2019.03.023
Lee, S.H., Ţene, M., Du, S., Wen, X., Efendiev, Y.: A conservative sequential fully implicit method for compositional reservoir simulation. J. Comput. Phys. 428, 109961 (2021). https://doi.org/10.1016/j.jcp.2020.109961
Gagliardi, F., Moreto, M., Olivieri, M., Valero, M.: The international race towards Exascale in Europe. CCF Trans. High Perform. Comput. 1, 3–13 (2019). https://doi.org/10.1007/s42514-019-00002-y
Reguly, I.Z., Mudalige, G.R.: Productivity, performance, and portability for computational fluid dynamics applications. Comput. Fluids (2020). https://doi.org/10.1016/j.compfluid.2020.104425
Chen-Charpentier, B.M., Kojouharov, H.V.: An unconditionally positivity preserving scheme for advection-diffusion reaction equations. Math. Comput. Model. 57, 2177–2185 (2013). https://doi.org/10.1016/j.mcm.2011.05.005
Sun, G.F., Liu, G.R., Li, M.: An efficient explicit finite-difference scheme for simulating coupled biomass growth on nutritive substrates. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/708497
Appadu, A.R.: Performance of UPFD scheme under some different regimes of advection, diffusion and reaction. Int. J. Numer. Methods Heat Fluid Flow 27(7), 1412–1429 (2017). https://doi.org/10.1108/HFF-01-2016-0038
Kolev, M.K., Koleva, M.N., Vulkov, L.G.: An unconditional positivity-preserving difference scheme for models of cancer migration and invasion. Mathematics 10(1), 1–22 (2022). https://doi.org/10.3390/math10010131
Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111(2), 169–205 (2008). https://doi.org/10.1007/s00211-008-0188-0
Chapwanya, M., Lubuma, J.M.S., Mickens, R.E.: Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences. Comput. Math. Appl. 68(9), 1071–1082 (2014). https://doi.org/10.1016/j.camwa.2014.04.021
Songolo, M.E.: A positivity-preserving nonstandard finite difference scheme for parabolic system with cross-diffusion equations and nonlocal initial conditions. Am. Sci. Res. J. Eng. Technol. Sci. 18(1), 252–258 (2016)
Agbavon, K.M., Appadu, A.R., Khumalo, M.: On the numerical solution of Fisher’s equation with coefficient of diffusion term much smaller than coefficient of reaction term. Adv. Differ. Equ. 146, 1–33 (2019). https://doi.org/10.1186/s13662-019-2080-x
Liu, H., Leung, S.: An alternating direction explicit method for time evolution equations with applications to fractional differential equations. Methods Appl. Anal. 26(3), 249–268 (2020). https://doi.org/10.4310/MAA.2019.v26.n3.a3
Gordon, P.: Nonsymmetric difference equations. J. Soc. Ind. Appl. Math. 13(3), 667–673 (1965). https://doi.org/10.1137/0113044
Gourlay, A.R.: Hopscotch: a fast second-order partial differential equation solver. IMA J. Appl. Math. 6(4), 375–390 (1970)
Saleh, M., Nagy, Á., Kovács, E.: Part 3: construction and investigation of new numerical algorithms for the heat equation. Multidiszcip. Tudományok 10(4), 349–360 (2020). https://doi.org/10.35925/j.multi.2020.4.38
Kovács, E.: A class of new stable, explicit methods to solve the non-stationary heat equation. Numer. Methods Partial Differ. Equ. 37(3), 2469–2489 (2020). https://doi.org/10.1002/num.22730
Saleh, M., Endre, K., Gábor, P.: Testing and improving a non-conventional unconditionally positive finite difference method. Multidiszcip. Tudományok 10(4), 206–213 (2020)
Kovács, E., Nagy, Á.: A new stable, explicit, and generic third-order method for simulating conductive heat transfer. Numer. Methods Partial Differ. Equ. 39(2), 1504–1528 (2023). https://doi.org/10.1002/num.22943
Kovács, E.: New stable, explicit, first order method to solve the heat conduction equation. J. Comput. Appl. Mech. 15(1), 3–13 (2020). https://doi.org/10.32973/jcam.2020.001
Fayazbakhsh, M.A., Bagheri, F., Bahrami, M.: A resistance-capacitance model for real-time calculation of cooling load in HVAC-R systems. J. Therm. Sci. Eng. Appl. (2015). https://doi.org/10.1115/1.4030640
Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010). https://doi.org/10.1017/S0962492910000048
Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer Verlag, Berlin (2001)
Holmes, M.H.: Introduction to Numerical Methods in Differential Equations. Springer, New York (2007)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic problems. Springer Verlag, Berlin (1991)
Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, vol. I. Springer Verlag, New South Wales (2006)
Mbroh, N.A., Munyakazi, J.B.: A robust numerical scheme for singularly perturbed parabolic reaction-diffusion problems via the method of lines. Int. J. Comput. Math. (2021). https://doi.org/10.1080/00207160.2021.1954621
Appadu, A.R., Tijani, Y.O., Munyakazi, J.B.: Computational study of some numerical methods for the generalized burgers-huxley equation. First Int. Conf. CSMCS 2021, 56–67 (2020)
Bastani, M., Salkuyeh, D.K.: A highly accurate method to solve Fisher’s equation. Pramana J. Phys. 78, 335–346 (2012). https://doi.org/10.1007/s12043-011-0243-8
Saleh, M., Kovács, E., Barna, I.F., Mátyás, L.: New analytical results and comparison of 14 numerical schemes for the diffusion equation with space-dependent diffusion coefficient. Mathematics 10(15), 2813 (2022). https://doi.org/10.3390/math10152813
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions, vol. 66. Cambridge Univ. Press, New York (2011)
Wikipedia, “Whittaker function.” [Online]. Available: https://en.wikipedia.org/wiki/Whittaker_function.
Chapra, S.C., Canale, R.P.: Numerical Methods for Engineers, Seventh Edition, 7th edn. McGraw-Hill Science/Engineering/Math, New York (2015)
Wang, X.Y., Zhu, Z.S., Lu, Y.K.: Solitary wave solutions of the generalised Burgers-Huxley equation. J. Phys. A. Math. Gen. 23(3), 271–274 (1990). https://doi.org/10.1088/0305-4470/23/3/011
Inan, B.: Finite difference methods for the generalized Huxley and Burgers-Huxley equations. Kuwait J. Sci. 44(3), 20–27 (2017)
Yu, J.L.: Adaptive optimal m-stage Runge-Kutta methods for solving reaction-diffusion-chemotaxis systems. J. Appl. Math. (2011). https://doi.org/10.1155/2011/389207
Jannelli, A.: Adaptive numerical solutions of time-fractional advection–diffusion–reaction equations. Commun. Nonlinear Sci. Numer. Simul. 105, 106073 (2022). https://doi.org/10.1016/j.cnsns.2021.106073
Ramos, J.I.: Adaptive methods of lines for one-dimensional reaction-diffusion equations. Int. J. Numer. Methods Fluids 16(8), 697–723 (1993). https://doi.org/10.1002/fld.1650160804
Eriksson, K., Johnson, C., Logg, A.: Adaptive computational methods for parabolic problems. In: Encyclopedia of Computational Mechanics. John Wiley & Sons Ltd, Chichester, UK (2004)
Fedoseev, P., Pesterev, D., Karimov, A., Butusov, D.: New step size control algorithm for semi-implicit composition ODE solvers. Algorithms 15(8), 275 (2022). https://doi.org/10.3390/a15080275
Gustafsson, K., Lundh, M., Söderlind, G.: A PI stepsize control for the numerical solution of ordinary differential equations. BIT 28(2), 270–287 (1988). https://doi.org/10.1007/BF01934091
Söderlind, G., Wang, L.: Adaptive time-stepping and computational stability. J. Comput. Appl. Math. 185(2), 225–243 (2006). https://doi.org/10.1016/j.cam.2005.03.008
Fekete, I., Conde, S., Shadid, J.N.: Embedded pairs for optimal explicit strong stability preserving Runge-Kutta methods. J. Comput. Appl. Math. 412, 114325 (2022). https://doi.org/10.1016/j.cam.2022.114325
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, vol. 1, 3rd edn. Cambridge University Press, Cambridge (2007)
Ramos, J.I.: A piecewise time-linearized method for the logistic differential equation. Appl. Math. Comput. 93(2–3), 139–148 (1998). https://doi.org/10.1016/S0096-3003(97)10049-2
Funding
This research was supported by the EU and the Hungarian State, co-financed by the ERDF in the framework of the GINOP-2.3.4-15-2016-00004 project for the first author.
Author information
Authors and Affiliations
Contributions
Conceptualization, design, methodology, supervision and the one-dimensional numerical investigation are due to E.K. Analytical proofs were performed by J.M. The research on the adaptive step size controller and the related investigation were done by M.S. The first draft of the manuscript was written by E.K. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kovács, E., Majár, J. & Saleh, M. Unconditionally Positive, Explicit, Fourth Order Method for the Diffusion- and Nagumo-Type Diffusion–Reaction Equations. J Sci Comput 98, 39 (2024). https://doi.org/10.1007/s10915-023-02426-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-023-02426-9