Skip to main content
Log in

Low-light Image Enhancement via Dual Reflectance Estimation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Improving the quality of low-light images is a fundamental task with vast applications in computer vision. Retinex-based methods which decompose the images into reflectance and illumination components have been actively studied over the past years. In this paper, we propose a Retinex-based method with dual reflectance estimation. To be precise, we start with a simple reflectance estimation based on the HSV color space, which is then accompanied by another variational-based estimation of both the reflectance and illumination. Finally, we bring a new perspective to the Retinex model by reconstructing the normal-light image with a novel transformation map given by the estimated reflectance and illumination, which we call radiance mapping. Extensive experiments show that our method obtains outstanding results, both numerically and visually, compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the link https://daooshee.github.io/BMVC2018website/, and https://drive.google.com/drive/folders/1lp6m5JE3kf3M66Dicbx5wSnvhxt90V4T.

Notes

  1. https://daooshee.github.io/BMVC2018website/

  2. https://drive.google.com/drive/folders/1lp6m5JE3kf3M66Dicbx5wSnvhxt90V4T

  3. https://github.com/b1sakher/Contrast-enhancement-in-digital-images

References

  1. Blomgren, P., Chan, T.F., Mulet, P.: Extensions to total variation denoising. In: Advanced Signal Processing: Algorithms, Architectures, and Implementations VII, vol. 3162, pp. 367–375. SPIE (1997)

  2. Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chang, H., Ng, M.K., Wang, W., Zeng, T.: Retinex image enhancement via a learned dictionary. Opt. Eng. 54(1), 013107 (2015)

    Article  Google Scholar 

  4. Coltuc, D., Bolon, P., Chassery, J.M.: Exact histogram specification. IEEE Trans. Image Process. 15(5), 1143–1152 (2006)

    Article  Google Scholar 

  5. Elad, M.: Retinex by two bilateral filters. In: International Conference on Scale-Space Theories in Computer Vision, pp. 217–229. Springer (2005)

  6. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)

  7. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  8. Gu, Z., Li, F., Lv, X.G.: A detail preserving variational model for image retinex. Appl. Math. Model. 68, 643–661 (2019)

    Article  MathSciNet  Google Scholar 

  9. Guo, C., Li, C., Guo, J., Loy, C.C., Hou, J., Kwong, S., Cong, R.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)

  10. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  Google Scholar 

  11. He, W., Liu, Y., Feng, J., Zhang, W., Gu, G., Chen, Q.: Low-light image enhancement combined with attention map and U-Net network. In: 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), pp. 397–401. IEEE (2020)

  12. Hines, G., Rahman, Z. U., Jobson, D., Woodell, G.: Single-scale retinex using digital signal processors. In: Global Signal Processing Conference, Paper 1324 (2005)

  13. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I: Fundamentals, vol. 305. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  14. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  15. Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)

    Article  Google Scholar 

  16. Kim, T.K., Paik, J.K., Kang, B.S.: Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans. Consum. Electron. 44(1), 82–87 (1998)

    Article  Google Scholar 

  17. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  18. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)

    Article  Google Scholar 

  19. Land, E.H., McCann, J.J.: Lightness and retinex theory. Josa 61(1), 1–11 (1971)

    Article  Google Scholar 

  20. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)

    Article  Google Scholar 

  21. Li, H., Zhang, L., Shen, H.: A perceptually inspired variational method for the uneven intensity correction of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(8), 3053–3065 (2012)

    Article  Google Scholar 

  22. Li, L., Wang, R., Wang, W., Gao, W.: A low-light image enhancement method for both denoising and contrast enlarging. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3730–3734. IEEE (2015)

  23. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)

    Article  MathSciNet  Google Scholar 

  24. Limare, N., Lisani, J.L., Morel, J.M., Petro, A.B., Sbert, C.: Simplest color balance. Image Process. On Line 1, 297–315 (2011)

    Article  Google Scholar 

  25. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)

    Article  MathSciNet  Google Scholar 

  26. Ma, L., Liu, R., Zhang, J., Fan, X., Luo, Z.: Learning deep context-sensitive decomposition for low-light image enhancement. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3071245

    Article  Google Scholar 

  27. Ma, W., Morel, J.M., Osher, S., Chien, A.: An l 1-based variational model for retinex theory and its application to medical images. In: CVPR 2011, pp. 153–160. IEEE (2011)

  28. Ma, W., Osher, S.: A TV bregman iterative model of retinex theory. Inverse Probl. Imaging 6(4), 697 (2012)

    Article  MathSciNet  Google Scholar 

  29. McCann, J.J., Parraman, C.E., Rizzi, A.: Pixel and spatial mechanisms of color constancy. In: Color Imaging XV: Displaying, Processing, Hardcopy, and Applications, vol. 7528, pp. 24–31. SPIE (2010)

  30. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

  31. Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imag. Sci. 4(1), 345–365 (2011)

    Article  MathSciNet  Google Scholar 

  32. Palma-Amestoy, R., Provenzi, E., Bertalmío, M., Caselles, V.: A perceptually inspired variational framework for color enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 458–474 (2008)

    Article  Google Scholar 

  33. Rahman, Z.u., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 1003–1006. IEEE (1996)

  34. Ren, X., Yang, W., Cheng, W.H., Liu, J.: LR3M: robust low-light enhancement via low-rank regularized retinex model. IEEE Trans. Image Process. 29, 5862–5876 (2020)

    Article  MathSciNet  Google Scholar 

  35. Salas, J.G.G., Lisani, J.L.: Local color correction. Image Process. on Line 1, 260–280 (2011)

    Article  Google Scholar 

  36. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  37. Wang, L.W., Liu, Z.S., Siu, W.C., Lun, D.P.: Lightening network for low-light image enhancement. IEEE Trans. Image Process. 29, 7984–7996 (2020)

    Article  Google Scholar 

  38. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6849–6857 (2019)

  39. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  40. Wang, W., He, C.: A variational model with barrier functionals for retinex. SIAM J. Imag. Sci. 8(3), 1955–1980 (2015)

    Article  MathSciNet  Google Scholar 

  41. Wang, W., Ng, M.K.: A nonlocal total variation model for image decomposition: illumination and reflectance. Numer. Math. Theory Methods Appl. 7(3), 334–355 (2014)

    Article  MathSciNet  Google Scholar 

  42. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018)

  43. Wei, S., Xu, H.: Staircasing reduction model applied to total variation based image reconstruction. In: 2009 17th European Signal Processing Conference, pp. 2579–2583. IEEE (2009)

  44. Xu, K., Yang, X., Yin, B., Lau, R.W.: Learning to restore low-light images via decomposition-and-enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2281–2290 (2020)

  45. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  46. Zhang, L., Shen, P., Peng, X., Zhu, G., Song, J., Wei, W., Song, H.: Simultaneous enhancement and noise reduction of a single low-light image. IET Image Proc. 10(11), 840–847 (2016)

    Article  Google Scholar 

  47. Zimmerman, J.B., Pizer, S.M., Staab, E.V., Perry, J.R., McCartney, W., Brenton, B.C.: An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Med. Imaging 7(4), 304–312 (1988)

    Article  Google Scholar 

  48. Zosso, D., Tran, G., Osher, S.J.: Non-local retinex–a unifying framework and beyond. SIAM J. Imag. Sci. 8(2), 787–826 (2015)

    Article  MathSciNet  Google Scholar 

  49. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graphics Gems pp. 474–485 (1994)

Download references

Funding

This work was supported in part by the National Key R &D Program of China under Grant 2021YFE0203700, and Grant ITF MHP/038/20.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FJ, TW. The first draft of the manuscript was written by TW, FJ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tieyong Zeng.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, F., Wang, T. & Zeng, T. Low-light Image Enhancement via Dual Reflectance Estimation. J Sci Comput 98, 36 (2024). https://doi.org/10.1007/s10915-023-02431-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02431-y

Keywords

Mathematics Subject Classification

Navigation