Skip to main content
Log in

Least-Squares Virtual Element Method for Stokes Problems on Polygonal Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a least-squares virtual element method on polygonal meshes is proposed for the stress-velocity formulation of the linear Stokes problem. The \(\mathbb {H}(\textrm{div})\)-and \(\textbf{H}^1\)-conforming virtual elements are used to approximate the stress and velocity variables, respectively. Benefiting from the virtual element method and the least-squares formulation, our method allows the use of general polygonal meshes and leads to a symmetric and positive definite system. The a priori error estimates are established for the stress in \(\mathbb {H}(\textrm{div})\) norm and for the velocity in \(\textbf{H}^1\) norm. Additionally, the least-squares functional naturally offers an a posteriori error estimator without extra effort, which together with the great flexibility of mesh can guide the adaptive mesh refinement to resolve the singularity. We also extend the present method to the nonlinear Stokes problem and show the corresponding least-squares virtual element method. A series of numerical examples supporting the theoretical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  Google Scholar 

  2. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  3. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  4. Beirão da Veiga, L., Gyrya, V., Lipnikov, K., Manzini, G.: Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228(19), 7215–7232 (2009)

    Article  MathSciNet  Google Scholar 

  5. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bochev, P., Lai, J., Olson, L.: A locally conservative, discontinuous least-squares finite element method for the Stokes equations. Int. J. Numer. Methods Fluids 68(6), 782–804 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bochev, P.B.: Analysis of least-squares finite element methods for the Navier–Stokes equations. SIAM J. Numer. Anal. 34(5), 1817–1844 (1997)

    Article  MathSciNet  Google Scholar 

  8. Bochev, P.B., Gunzburger, M.D.: Finite element methods of least-squares type. SIAM Rev. 40(4), 789–837 (1998)

    Article  MathSciNet  Google Scholar 

  9. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2014)

    Article  MathSciNet  Google Scholar 

  10. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2014)

    Article  MathSciNet  Google Scholar 

  11. Cai, Z., Korsawe, J., Starke, G.: An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity. Numer. Methods Partial Differ. Equ. 21(1), 132–148 (2005)

    Article  MathSciNet  Google Scholar 

  12. Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004)

    Article  MathSciNet  Google Scholar 

  13. Cai, Z., Starke, G.: First-order system least squares for the stress-displacement formulation: linear elasticity. SIAM J. Numer. Anal. 41(2), 715–730 (2003)

    Article  MathSciNet  Google Scholar 

  14. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    Article  MathSciNet  Google Scholar 

  15. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2017)

    MathSciNet  Google Scholar 

  16. Chang, C.L., Nelson, J.J.: Least-squares finite element method for the Stokes problem with zero residual of mass conservation. SIAM J. Numer. Anal. 34(2), 480–489 (1997)

    Article  MathSciNet  Google Scholar 

  17. Chen, L., Wang, F.: A divergence free weak virtual element method for the Stokes problem on polytopal meshes. J. Sci. Comput. 78(2), 864–886 (2019)

    Article  MathSciNet  Google Scholar 

  18. Di Pietro, D.A., Droniou, J.: A hybrid high-order method for Leray-Lions elliptic equations on general meshes. Math. Comp. 86(307), 2159–2191 (2017)

    Article  MathSciNet  Google Scholar 

  19. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 282, 132–160 (2014)

    Article  MathSciNet  Google Scholar 

  20. Gatica, G.N., Márquez, A., Sánchez, M.A.: A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of Quasi-Newtonian Stokes flows. Comput. Methods Appl. Mech. Eng. 200(17–20), 1619–1636 (2011)

    Article  MathSciNet  Google Scholar 

  21. Gatica, G.N., Sequeira, F.A.: A priori and a posteriori error analyses of an augmented HDG method for a class of Quasi-Newtonian Stokes flows. J. Sci. Comput. 69(3), 1192–1250 (2016)

    Article  MathSciNet  Google Scholar 

  22. He, Q., Glowinski, R., Wang, X.-P.: A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230(12), 4991–5009 (2011)

    Article  MathSciNet  Google Scholar 

  23. Mu, L., Wang, J., Ye, X.: A least-squares-based weak Galerkin finite element method for second order elliptic equations. SIAM J. Sci. Comput. 39(4), A1531–A1557 (2017)

    Article  MathSciNet  Google Scholar 

  24. Nisters, C., Schwarz, A.: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 341, 333–359 (2018)

    Article  MathSciNet  Google Scholar 

  25. Pehlivanov, A.I., Carey, G.F., Lazarov, R.D.: Least-squares mixed finite elements for second-order elliptic problems. SIAM J. Numer. Anal. 31(5), 1368–1377 (1994)

    Article  MathSciNet  Google Scholar 

  26. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  27. Thompson, L.L., Pinsky, P.M.: A Galerkin least-squares finite element method for the two-dimensional Helmholtz equation. Internat. J. Numer. Methods Eng. 38(3), 371–397 (1995)

    Article  MathSciNet  Google Scholar 

  28. Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989)

    Article  MathSciNet  Google Scholar 

  29. Wang, G., Mu, L., Wang, Y., He, Y.: A pressure-robust virtual element method for the Stokes problem. Comput. Methods Appl. Mech. Eng. 382, 113879 (2021)

    Article  MathSciNet  Google Scholar 

  30. Wang, G., Wang, F., Chen, L., He, Y.: A divergence free weak virtual element method for the Stokes-Darcy problem on general meshes. Comput. Methods Appl. Mech. Eng. 344, 998–1020 (2019)

    Article  MathSciNet  Google Scholar 

  31. Wang, G., Wang, F., He, Y.: A divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes. Adv. Comput. Math. 47(6), 83, 37 (2021)

    Article  MathSciNet  Google Scholar 

  32. Wang, G., Wang, Y., He, Y.: A posteriori error estimates for the virtual element method for the Stokes problem. J. Sci. Comput. 84(2), 37, 25 (2020)

    Article  MathSciNet  Google Scholar 

  33. Wang, G., Wang, Y., He, Y.: Least-squares virtual element method for the convection-diffusion-reaction problem. Int. J. Numer. Methods Eng. 122(11), 2672–2693 (2021)

    Article  MathSciNet  Google Scholar 

  34. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  Google Scholar 

  35. Wang, Y., Wang, G.: A least-squares virtual element method for second-order elliptic problems. Comput. Math. Appl. 80(8), 1873–1886 (2020)

    Article  MathSciNet  Google Scholar 

  36. Wang, Y., Wang, G., Shen, Y.: A pressure-robust virtual element method for the Navier-Stokes problem on polygonal mesh. Comput. Math. Appl. 131, 124–137 (2023)

    Article  MathSciNet  Google Scholar 

  37. Wang, Y., Wang, G., Wang, F.: An adaptive virtual element method for incompressible flow. Comput. Math. Appl. 101, 63–73 (2021)

    Article  MathSciNet  Google Scholar 

  38. Zhang, N., Zheng, H., Yuan, C., Wu, W.: A conservation-prioritized approach simultaneously enhancing mass and momentum conservation of least-squares method for Stokes/Navier-Stokes problems. Comput. Methods Appl. Mech. Eng. 398, 115246 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Gang Wang was supported by China Postdoctoral Science Foundation (No. 2021M692648) and National Natural Science Foundation of China (No. 12001433, 12371405). The work of Ying Wang was supported by National Natural Science Foundation of China (No. 12201485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, Y. Least-Squares Virtual Element Method for Stokes Problems on Polygonal Meshes. J Sci Comput 98, 46 (2024). https://doi.org/10.1007/s10915-023-02436-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02436-7

Keywords

Navigation