Skip to main content
Log in

Second-Order Three-Scale Asymptotic Analysis and Algorithms for Steklov Eigenvalue Problems in Composite Domain with Hierarchical Cavities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A top–down strategy based on the second-order asymptotic method is proposed for solving the Steklov eigenvalue problems on composite perforated materials with three-scale and two-periodic structures. Three different kinds of configurations are considered where the cavities are distributed only in the meso-scale, micro-scale, and both-scale representative cells respectively. Firstly, the second-order two-scale asymptotic expansion is performed between the macroscopic and the mesoscopic scale. Then, the second-order two-scale analysis is further developed on the mesoscopic cell functions at the microscopic level. While the asymptotic expansions of the first-order mesoscopic cell functions are similar for the three cases, the expansions of the second-order mesoscopic cell functions are distinguished from each other. It is interesting that when the holes with different scales are considered for the third case, the cell functions defined on the mesoscopic scale are dependent explicitly on the ratio between the mesoscopic and microscopic periods after homogenization. The three-scale asymptotic expansions of the eigenvalues are derived based on the "corrector equations" in a uniform manner and calculated in the integration form. The multi-scale finite element procedures are established based on these proposed asymptotic models and both the two- and three-dimensional asymptotic computations are carried out. By comparing the asymptotic computations with the classic finite element algorithm, it is demonstrated that this second-order three-scale asymptotic algorithm is effective in approximating the Steklov eigenvalues and reproducing the local oscillations of the eigenfunctions with less computational cost and the convergence of the second-order solutions are also confirmed. It is also instructive that when the parameters existing on the cavity boundaries are considered in the perforated materials, the second-order expansion terms should be included in the multi-scale analysis to reflect the asymptotic behavior of the structures correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Stekloff, M.: Sur les problmes fondamentaux de la physique math\(\grave{e}\)matique. Ann. Sci. \(\grave{E}\)c. Norm. Sup\(\grave{e}\)r. 19(1902), 455–490 (in French)

  2. Hadjesfandiari, A.R., Dargush, G.F.: Theory of boundary eigensolutions in engineering mechanics. J. Appl. Mech. 68, 101–108 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hadjesfandiari, A.R., Dargush, G.F.: Boundary eigensolutions in elasticity. I. Theoretical development. Int. J. Solids Struct. 38, 6589–6625 (2001)

    Article  MathSciNet  Google Scholar 

  4. Hadjesfandiari, A.R., Dargush, G.F.: Boundary eigensolutions in elasticity. II. Application to computational mechanics. Int. J. Solids Struct. 40, 1001–1031 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bermudez, A., Rodriguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87, 201–227 (2000)

    Article  MathSciNet  Google Scholar 

  6. Doumate, J., Leadi, L., Marcos, A.: Asymmetric Steklov problems with sign-changing weights. J. Math. Anal. Appl. 425, 1004–1038 (2015)

    Article  MathSciNet  Google Scholar 

  7. Andreev, A.B., Todorov, T.D.: Isoparametric finite element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24, 309–322 (2004)

    Article  MathSciNet  Google Scholar 

  8. Armentano, M.G., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58, 593–601 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bi, H., Yang, Y.D.: A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217(23), 9669–9678 (2011)

    MathSciNet  Google Scholar 

  10. Ma, Y.Y., Sun, J.G.: Integral equation method for a Non-Selfadjoint Steklov Eigenvalue Problem. Commun. Comput. Phys. 31, 1546–1560 (2022)

    Article  MathSciNet  Google Scholar 

  11. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North - Holland, Amsterdam (1978)

  12. Bourget, J.F., Iria-Laboria. Numerical Experiments of the Homogenization Method for Operators with Periodic Coefficients. Springer-Verlag, Heidelberg (1979)

  13. Lions, J.L.: Some Methods in the Mathematical Analysis of Systems and their Control. Science Press, Gordon and Breach, Beijing (1981)

    Google Scholar 

  14. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, New York (1999)

    Book  Google Scholar 

  15. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. North - Holland, Amsterdam (1992)

  16. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  Google Scholar 

  17. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. Abdulle, A., E, W.N., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)

  19. E, W.N.: Principles of Multiscale Modeling. Science Press, Beijing (2012)

  20. Cui, J.Z., Cao, L.Q.: Finite element method based on two-scale asymptotic analysis. Math. Numer. Sin. 1, 89–102 (1998)

    MathSciNet  Google Scholar 

  21. Feng, Y.P., Cui, J.Z.: Multi-scale analysis and FE computation for the structure of composite materials with small periodicity configuration under condition of coupled thermo-elasticity. Int. J. Numer. Methods Eng. 60, 241–269 (2004)

    Article  Google Scholar 

  22. Yang, Z.H., Cui, J.Z.: The statistical second-order two-scale analysis for dynamic thermo-mechanical performances of the composite structure with consistent random distribution of particles. Comput. Mater. Sci. 69, 359–373 (2013)

    Article  Google Scholar 

  23. Yang, Z.H., Cui, J.Z., Wu, Y.T., Wang, Z.Q., Wan, J.J.: Second-order two-scale analysis method for dynamic thermo-mechanical problems in periodic structure. Int. J. Numer. Anal. Model. 12(1), 144–161 (2015)

    MathSciNet  Google Scholar 

  24. Yang, Z.Q., Cui, J.Z., Sun, Y., Liang, J., Yang, Z.H.: Multiscale analysis method for thermo-mechanical performance of periodic porous materials with interior surface radiation. Int. J. Numer. Methods Eng. 105, 323–350 (2016)

    Article  MathSciNet  Google Scholar 

  25. Yang, Z.H., Huang, J.Z., Feng, X.B., Guan, X.F.: An efficient multi-modes Monte Carlo homogenization method for random materials. SIAM J. Sci. Comput. 44(3), A1752–A1774 (2022)

    Article  Google Scholar 

  26. Yang, Z.H., Wang, X.T., Guan, X.F., Huang, J.Z., Wu, X.X.: A normalizing field flow induced two-stage stochastic homogenization method for random composite materials. Commun. Comput. Phys. 34(3), 787–812 (2023)

    Article  MathSciNet  Google Scholar 

  27. Zhang, S., Yang, Z.H., Guan, X.F.: Multi-modal multiscale method for heat conduction problem in heterogeneous solids with uncertain material parameters. Adv. Appl. Math. Mech. 15(1), 69–93 (2023)

    Article  MathSciNet  Google Scholar 

  28. Su, F., Cui, J.Z.: A second-order and two-scale analysis method for the quasi-periodic structure of composite materials. Finite Elem. Anal. Des. 46, 320–327 (2010)

    Article  MathSciNet  Google Scholar 

  29. Allaire, G., Habibi, Z.: Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete Contin. Dyn. Syst. Ser. B 18, 1–36 (2013)

    MathSciNet  Google Scholar 

  30. Yang, Z.H., Zhang, Y., Dong, H., et al.: High-order three-scale method for mechanical behavior analysis of composite structures with multiple periodic configurations. Compos. Sci. Technol. 152, 198–210 (2012)

    Article  Google Scholar 

  31. Yang, Z.H., Guan, X.F., Cui, J.Z., et al.: Stochastic multiscale heat transfer analysis of heterogeneous materials with multiple random configurations. Commun. Comput. Phys. 22(2), 431–459 (2020)

    Article  MathSciNet  Google Scholar 

  32. Dong, H., Yang, Z.H., Guan, X.F., Cui, J.Z.: Stochastic higher-order three-scale strength prediction model for composite structures with micromechanical analysis. J. Comput. Phys. 465, 111352 (2022)

    Article  MathSciNet  Google Scholar 

  33. Dong, H.: Computationally efficient higher-order three-scale method for nonlocal gradient elasticity problems of heterogeneous structures with multiple spatial scales. Appl. Math. Model. 109, 426–454 (2022)

    Article  MathSciNet  Google Scholar 

  34. Kesavan, S.: Homogenization of elliptic eigenvalue problems: part I. Appl. Math. Optim. 5(1), 153–167 (1979)

    Article  MathSciNet  Google Scholar 

  35. Kesavan, S.: Homogenization of elliptic eigenvalue problems: part II. Appl. Math. Optim. 5(1), 197–216 (1979)

    Article  MathSciNet  Google Scholar 

  36. Nankakumar, A.K.: Homogenization of eigenvalue problems of elasticity in perforated domains. Asymptot. Anal. 9, 337–358 (1994)

    MathSciNet  Google Scholar 

  37. Vanninathan, M.: Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. 90(3), 239–271 (1981)

    Article  MathSciNet  Google Scholar 

  38. Cao, L.Q., Cui, J.Z., Zhu, D.C.: Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equations with rapidly oscillating coefficients over general domains. SIAM J. Numer. Anal. 40(2), 543–577 (2002)

    Article  MathSciNet  Google Scholar 

  39. Cao, L.Q., Cui, J.Z.: Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problems for second order elliptic equations in perforated domains. Numer. Math. 96, 528–581 (2004)

    MathSciNet  Google Scholar 

  40. Allaire, G., Piatnitski, A.: Homogenization of the Schrodinger equation and effective mass theorem. Comm. Math. Phys. 258, 1–22 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. Zhang, L., Cao, L.Q., Wang, X.: Multiscale finite element algorithm of the eigenvalue problems for the elastic equations in composite materials. Comput. Methods Appl. Mech. Eng. 198, 2539–2554 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  42. Craster, R.V., Kaplunov, J., Pichugin, A.V.: High frequency homogenization for periodic media. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466, 2341–2362 (2010)

  43. Piat, V.C., Nazarov, S.S., Piatniski, A.L.: Steklov problems in perforated domains with a coefficient of indefinite sign. Netw. Heterog. Media 7(1), 151–178 (2012)

    Article  MathSciNet  Google Scholar 

  44. Douanla, H.: Homogenization of Steklov Spectral problems with indefinite density function in perforated domains. Acta Appl. Math. 123, 261–284 (2013)

    Article  MathSciNet  Google Scholar 

  45. Cao, L.Q., Zhang, L., Allegretto, W., Lin, Y.P.: Multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. Int. J. Numer. Anal. Model. 10(1), 42–73 (2013)

    MathSciNet  Google Scholar 

  46. Cao, L.Q., Zhang, L., Allegretto, W., Lin, Y.P.: Multiscale asymptotic method for Steklov eigenvalue equations in composite media. SIAM J. Numer. Anal. 51(1), 273–296 (2013)

    Article  MathSciNet  Google Scholar 

  47. Li, Z.H., Ma, Q., Cui, J.Z.: Multi-scale modal analysis for axisymmetric and spherical symmetric structures with periodic configurations. Comput. Methods Appl. Mech. Eng. 317, 1068–1101 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  48. Ma, Q., Li, Z.H., Cui, J.Z.: Multi-scale asymptotic analysis and computation of the elliptic eigenvalue problems in curvilinear coordinates. Comput. Methods Appl. Mech. Eng. 340, 340–365 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  49. Ye, S.Y., Ma, Q., Hu, B., Cui, J.Z., Jiang, X.: Multiscale asymptotic analysis and computations for steklov eigenvalue problem in periodically perforated domain. Math. Meth. Appl. Sci. 1–21 (2021)

  50. Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenization. Proc. R. Soc. Edinb. Sect. A Math. 126(2), 297–342 (1996)

    Article  Google Scholar 

  51. Trucu, D., Chaplain, M.A.J., Marciniak-Czochra, A.: Three-scale convergence for processes in heterogeneous media. Appl. Anal. 91(7), 1351–1373 (2012)

    Article  MathSciNet  Google Scholar 

  52. Telega, J.J., Galka, A., Tokarzewski, S.: Application of the reiterated homogenization to determination of effective moduli of a compact bone. J. Theor. Appl. Mech. 37(3), 687–706 (1999)

    Google Scholar 

  53. Ramirez-Torres, A., Penta, R., Rogriguez-Ramos, R., Merodio, J., Sabina, F.J., Bravo-Castillero, J., Guinovart-Diaz, R., Preziisi, L., Grillo, A.: Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int. J. Solids Struct. 130–131, 190–198 (2018)

    Article  Google Scholar 

  54. Yang, Z.Q., Sun, Y., Liu, Y.Z., Guan, T.Y., Dong, H.: A three-scale asymptotic analysis for ageing linear viscoelastic problems of composites with multiple configurations. Appl. Math. Model. 71, 223–242 (2019)

    Article  MathSciNet  Google Scholar 

  55. Dong, H., Zheng, X.J., Cui, J.Z., Nie, Y.F., Yang, Z.Q., Yang, Z.H.: High-order three-scale computational method for dynamic thermo-mechanical problems of composite structures with multiple spatial scales. Int. J. Solids Struct. 169, 95–121 (2019)

    Article  Google Scholar 

  56. Yang, Z.Q., Sun, Y., Cui, J.Z., Ge, J.G.: A three-scale asymptotic expansion for predicting viscoelastic properties of composites with multiple configuration. Eur. J. Mech. A-Solid. 76, 235–246 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. Dong, H., Cui, J.Z., Nie, Y.F., Yang, Z.H., Wang, Z.Q.: High-order three-scale computational method for heat conduction problems of axisymmetric composite structures with multiple spatial scales. Adv. Eng. Softw. 121, 1–12 (2018)

    Article  Google Scholar 

  58. Ma, Q., Cui, J.Z., Yang, Z., Yang, Z.Q., Jiang, X., Li, Z.H.: Two-scale and three-scale asymptotic computations of the Neumann-type eigenvalue problems for hierarchically perforated materials. Appl. Math. Model. 92(6), 565–593 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported by National Natural Science Foundation of China (11801387), Natural Science Foundation of Sichuan Province(2022NSFSC0322), the National Key R &D Program of China(2019YFA040520X, 2022YFA1005104) and State Key Laboratory of Science and Engineering Computing.

Funding

This funding was supported by the National Natural Science Foundation of China (Grant No. 11801387), Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC0322), Key Research and Development Program of Sichuan Province (Grant No. 2019YFA040520X), Key Research and Development Program of Sichuan Province (Grant No. 2022YFA1005104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Ma, Q., Tang, Q. et al. Second-Order Three-Scale Asymptotic Analysis and Algorithms for Steklov Eigenvalue Problems in Composite Domain with Hierarchical Cavities. J Sci Comput 98, 61 (2024). https://doi.org/10.1007/s10915-023-02437-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02437-6

Keywords

Navigation