Abstract
In this paper, an effective fully-discrete implicit scheme for solving linear reaction-diffusion equations is constructed by using the variable-time-step two-step backward differentiation formula (VSBDF2) in time combining with the nonconforming finite element methods in space. By introducing a modified energy projection operator, a discrete Laplace operator, the discrete orthogonal convolution kernels, we obtain the optimal and sharp error estimates of order \(O(h^2+\tau ^2)\) in \(L^2\)-norm and \(O(h+\tau ^2)\) in \(H^1\)-norm under a mild restriction \(0<r_k< r_{\max }\approx 4.8645\) for the ratio of adjacent time steps \(r_k\). Furthermore, with the help of a modified discrete Grönwall inequality and the combination technique of interpolation and projection operators, we achieved the superclose result between the interpolation function \(I_hu\) and finite element solution \(u_h\) in \(H^1\)-norm of order \(O(h^2+\tau ^2)\), which together with the interpolation postprocessing operator \(\Pi _{2h}\) leads to the global superconvergence result about \(u-\Pi _{2h}u_h\) in \(H^1\)-norm of order \(O(h^2+\tau ^2)\). Finally, numerical tests are provided to verify the theoretical analysis.


Similar content being viewed by others
Data Availability
No data was used for the research described in the article.
References
Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT Numer. Math. 38, 644–662 (1998). https://doi.org/10.1007/BF02510406
Brenner, S.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897–921 (1996). https://doi.org/10.1090/S0025-5718-96-00746-6
Carstensen, C., Köhler, K.: Nonconforming FEM for the obstacle problem. IMA J. Numer. Anal. 37(1), 64–93 (2017). https://doi.org/10.1093/imanum/drw005
Chen, S., Shi, D., Zhao, Y.: Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes. IMA J. Numer. Anal. 24(1), 77–95 (2004). https://doi.org/10.1093/imanum/24.1.77
Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019). https://doi.org/10.1137/18M1206084
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)
Di, Y., Ma, Y., Shen, J., Zhang, J.: A variable time-step IMEX-BDF2 SAV scheme and its sharp error estimate for the Navier–Stokes equations. ESAIM: Math. Model. Numer. Anal. 57, 1143–1170 (2023). https://doi.org/10.1051/m2an/2023007
Di, Y., Wei, Y., Zhang, J., Zhao, C.: Sharp error estimate of an implicit BDF2 scheme with variable time steps for the phase field crystal model. J. Sci. Comput. 92(2), 1–21 (2022). https://doi.org/10.1007/s10915-022-01919-3
Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19, 33–55 (2005). https://doi.org/10.1007/BF02935787
Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61(1), 196–221 (2014). https://doi.org/10.1007/s10915-014-9821-5
Hu, J., Man, H., Shi, Z.: Constrained nonconforming rotated \(Q_1\) element for Stokes flow and planar elasticity. Math. Numer. Sin. Chin. Ed. 27(3), 311 (2005). https://doi.org/10.12286/jssx.2005.3.311
Hu, J., Schedensack, M.: Two low-order nonconforming finite element methods for the Stokes flow in three dimensions. IMA J. Numer. Anal. 39(3), 1447–1470 (2019). https://doi.org/10.1093/imanum/dry021
Li, M., Zhao, J., Wang, N., Chen, S.: Conforming and nonconforming conservative virtual element methods for nonlinear Schrödinger equation: a unified framework. Comput. Methods Appl. Mech. Eng. 380, 113793 (2021). https://doi.org/10.1016/j.cma.2021.113793
Liao, H., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022). https://doi.org/10.1093/imanum/draa075
Liao, H., Song, X., Tang, T., Zhou, T.: Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci. China Math. 64, 887–902 (2021). https://doi.org/10.1007/s11425-020-1817-4
Liao, H., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Numer. Anal. 58(4), 2294–2314 (2020). https://doi.org/10.1137/19M1289157
Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25(1), 160–181 (2005). https://doi.org/10.1093/imanum/drh008
Ma, Y., , Zhang, J., Zhao, C.: The unconditionally optimal \(H^1\)-norm error estimate of a semi-implicit Galerkin FEMs VSBDF2 scheme for solving semilinear parabolic equations. submitted
Nilssen, T., Tai, X., Winther, R.: A robust nonconforming \(H^2\)-element. Math. Comput. 70(234), 489–505 (2001). https://doi.org/10.1090/S0025-5718-00-01230-8
Qiao, Z., Yao, C., Jia, S.: Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic Maxwell’s equations. J. Sci. Comput. 46, 1–19 (2011). https://doi.org/10.1007/s10915-010-9406-x
Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8(2), 97–111 (1992). https://doi.org/10.1002/num.1690080202
Shen, Y., Gong, W., Yan, N.: Convergence of adaptive nonconforming finite element method for stokes optimal control problems. J. Comput. Appl. Math. 412, 114336 (2022). https://doi.org/10.1016/j.cam.2022.114336
Shi, D., Liu, Q.: Nonconforming quadrilateral finite element method for Ginzburg–Landau equation. Numer. Methods Partial Differ. Equ. 36(2), 329–341 (2020). https://doi.org/10.1002/num.22430
Shi, D., Mao, S., Chen, S.: An anisotropic nonconforming finite element with some superconvergence results. J. Comput. Math. 23, 261–274 (2005)
Shi, D., Pei, L.: Low order Crouzeix–Raviart type nonconforming finite element methods for the 3D time-dependent Maxwell’s equations. Appl. Math. Comput. 211(1), 1–9 (2009). https://doi.org/10.1016/j.amc.2009.01.027
Shi, D., Pei, L.: Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Appl. Math. Comput. 219(17), 9447–9460 (2013). https://doi.org/10.1016/j.amc.2013.03.008
Shi, D., Wang, J., Yan, F.: Unconditional superconvergence analysis for nonlinear parabolic equation with \(EQ^{rot}_1\) nonconforming finite element. J. Sci. Comput. 70(1), 85–111 (2017). https://doi.org/10.1007/s10915-016-0243-4
Shi, D., Wang, R.: High accuracy analysis of Galerkin finite element method for Klein–Gordon–Zakharov equations. Appl. Math. Comput. 415, 126701 (2022). https://doi.org/10.1016/j.amc.2021.126701
Shi, D., Xu, C.: \(EQ^{rot}_1\) nonconforming finite element approximation to Signorini problem. Sci. China Math. 56(6), 1301–1311 (2013)
Shi, D., Xu, C., Chen, J.: Anisotropic nonconforming quadrilateral finite element approximation to second order elliptic problems. J. Sci. Comput. 56(3), 637–653 (2013). https://doi.org/10.1007/s10915-013-9690-3
Shi, X., Lu, L.: A new approach of superconvergence analysis of nonconforming Wilson finite element for semi-linear parabolic problem. Comput. Math. Appl. 94, 28–37 (2021). https://doi.org/10.1016/j.camwa.2021.04.022
Shi, Z.: A remark on the optimal order of convergence of Wilson nonconforming element. Math. Numer. Sin. 8(2), 159–163 (1986). https://doi.org/10.12286/jssx.1986.2.159
Shi, Z., Wang, M.: The finite element method. Science (2010)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2007). https://doi.org/10.1007/3-540-33122-0
Wang, M., Shi, Z., Xu, J.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106(2), 335–347 (2007). https://doi.org/10.1007/s00211-007-0063-4
Wei, Y., Zhang, J., Zhao, C., Zhao, Y.: A unconditional energy dissipative adaptive IMEX BDF2 scheme and its error estimates for Caha–Hilliard equation on generalized SAV approach (submitted) (2024)
Xie, P., Shi, D., Li, H.: A new robust \(C^0\)-type nonconforming triangular element for singular perturbation problems. Appl. Math. Comput. 217(8), 3832–3843 (2010). https://doi.org/10.1016/j.amc.2010.09.042
Zhang, H., Yang, X.: Superconvergence analysis of nonconforming finite element method for time-fractional nonlinear parabolic equations on anisotropic meshes. Comput. Math. Appl. 77(10), 2707–2724 (2019). https://doi.org/10.1016/j.camwa.2019.01.001
Zhang, J., Zhao, C.: Sharp error estimate of BDF2 scheme with variable time steps for linear reaction-diffusion equations. J. Math. 41(6), 471–488 (2021)
Zhang, J., Zhao, C.: Sharp error estimate of BDF2 scheme with variable time steps for molecular beam epitaxial models without slop selection. J. Math. 42(5), 377–401 (2022). https://doi.org/10.13140/RG.2.2.24714.59842
Zhang, Y., Shi, D.: Convergence analysis of a new nonconforming mixed finite element for parabolic equation on anisotropic mesh. Math. Numer. Sin. 35(2), 171 (2013). https://doi.org/10.12286/jssx.2013.2.171
Zhao, C., Liu, N., Ma, Y., Zhang, J.: Unconditionally optimal error estimate of a linearized variable-time-step BDF2 scheme for nonlinear parabolic equations. Commun. Math. Sci. 21(3), 775–794 (2023). https://doi.org/10.48550/arXiv.2201.06008
Zhao, C., Yang, R., Di, Y., Zhang, J.: Sharp error estimate of variable time-step IMEX BDF2 scheme for parabolic integro-differential equations with nonsmooth initial data arising in finance. J. Comput. Math. (Accept) (2023). https://doi.org/10.48550/arXiv.2201.09322
Zhu, G., Shi, D., Chen, S.: Superconvergence analysis of lower order anisotropic finite element. Appl. Math. Mech. 28(8), 1119–1130 (2007). https://doi.org/10.1007/s10483-007-0814-x
Funding
This work is supported in part by the National Natural Science Foundation of China under grants Nos. 12171376, the Fundamental Research Funds for the Central Universities (No. 2042021kf0050) and WHU-2022-SYJS-0002. The numerical simulations in this work have been done on the supercomputing system in the Supercomputing Center of Wuhan University.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pei, L., Wei, Y., Zhang, C. et al. Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations. J Sci Comput 98, 67 (2024). https://doi.org/10.1007/s10915-024-02456-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02456-x