Skip to main content
Log in

An Exponential Time Differencing Runge–Kutta Method ETDRK32 for Phase Field Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The exponential time differencing Runge–Kutta method (ETDRK) developed by Cox and Matthews has proven effective in computing nonlinear partial differential equation. However, it is difficult to prove the unconditional energy stability for third-order or higher ETDRK method. In this paper, we proposed a new third-order ETDRK scheme, ETDRK3, and prove its unconditional energy stability. Combining ETDRK3 with a second-order scheme ETDRK2, we proposed an adaptive ETDRK method(ETDRK32). Furthermore, the numerical simulations for phase problems demonstrate the accuracy, stability and efficiency of adaptive step-size strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Brune, H.: Epitaxial growth of thin films. Surf. Interface Sci. 4, 421–477 (2014)

    Article  Google Scholar 

  3. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  4. Chen, L.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  5. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Math. Model. Numer. Anal. 54(3), 727–750 (2020)

    Article  MathSciNet  Google Scholar 

  6. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7(3), 1–27 (2020)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Wang, S., Wang, X.: Energy stable arbitrary order ETD-MS method for gradient flows with Lipschitz nonlinearity. CSIAM Trans. Appl. Math. 2(3), 460–483 (2021)

    Article  MathSciNet  Google Scholar 

  8. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chen, W., Zhang, Y., Li, W., Wang, Y., Yan, Y.: Optimal convergence analysis of a second order scheme for a thin film model without slope selection. J. Sci. Comput. 80(3), 1716–1730 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81(1), 154–185 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40(6), A3982–A4006 (2018)

    Article  MathSciNet  Google Scholar 

  12. Choi, J.W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Phys. A Stat. Mech. Appl. 388(9), 1791–1803 (2009)

    Article  MathSciNet  Google Scholar 

  13. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    Article  MathSciNet  Google Scholar 

  14. Dormand, J.R., Prince, P.J.: Runge–Kutta triples. Comput. Math. Appl. 12(9), 1007–1017 (1986)

    Article  MathSciNet  Google Scholar 

  15. Qiang, D., Lili, J., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    Article  MathSciNet  Google Scholar 

  16. Ehrlich, G., Hudda, F.G.: Atomic view of surface self-diffusion: tungsten on tungsten. J. Chem. Phys. 44(3), 1039–1049 (1966)

    Article  Google Scholar 

  17. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    Article  MathSciNet  Google Scholar 

  18. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proceedings Library (OPL) 529, 39–46 (1998)

  19. Fu, Z., Yang, J.: Energy-decreasing exponential time differencing Runge-Kutta methods for phase-field models. J. Comput. Phys. 454, 110943 (2022)

    Article  MathSciNet  Google Scholar 

  20. Golubović, L.: Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 78(1), 90–93 (1997)

    Article  Google Scholar 

  21. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin Heidelberg (1996)

    Book  Google Scholar 

  22. Hao, Y., Huang, Q., Wang, C.: A third order BDF energy stable linear scheme for the no-slope-selection thin film model. Commun. Comput. Phys. 29(3), 905–929 (2021)

    Article  MathSciNet  Google Scholar 

  23. Higham N.J.: Functions of matrices: theory and computation. SIAM (2008)

  24. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87(312), 1859–1885 (2018)

    Article  MathSciNet  Google Scholar 

  25. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)

    Article  MathSciNet  Google Scholar 

  26. Lebedev, V., Sysoeva, A., Galenko, P.: Unconditionally gradient-stable computational schemes in problems of fast phase transitions. Phys. Rev. E 83(2), 026705 (2011)

    Article  Google Scholar 

  27. Li, B., Liu, J.-G.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004)

    Article  MathSciNet  Google Scholar 

  28. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    Article  MathSciNet  Google Scholar 

  29. Li, Y., Lee, H.G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation. Comput. Math. Appl. 60(6), 1591–1606 (2010)

    Article  MathSciNet  Google Scholar 

  30. Liao, H.L., Song, X., Tang, T., Zhou, T.: Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci. China Math. 64(5), 887–902 (2021)

    Article  MathSciNet  Google Scholar 

  31. Qiao, Z., Zhang, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11(4), 1261–1278 (2012)

    Article  MathSciNet  Google Scholar 

  32. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)

    Article  MathSciNet  Google Scholar 

  33. Shen, J., Jie, X., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  34. Tourret, D., Liu, H., LLorca, J.: Phase-field modeling of microstructure evolution: recent applications, perspectives and challenges. Prog. Mater. Sci. 123, 100810 (2022)

    Article  Google Scholar 

  35. Verner, J.H.: Numerically optimal Runge–Kutta pairs with interpolants. Numer. Algorithms 53(2–3), 383–396 (2010)

    Article  MathSciNet  Google Scholar 

  36. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28(1), 405–423 (2010)

    Article  MathSciNet  Google Scholar 

  37. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  38. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Mod. Methods Appl. Sci. 27(11), 1993–2030 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Chen is supported by the National Natural Science Foundation of China (NSFC) 12241101 and 12071090, he also thanks the Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, for the support. Finally, we are greatly indebted to the referees their constructive comments and suggestions which led to an improved presentation of this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Chen.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Yang, H. & Chen, W. An Exponential Time Differencing Runge–Kutta Method ETDRK32 for Phase Field Models. J Sci Comput 99, 6 (2024). https://doi.org/10.1007/s10915-024-02474-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02474-9

Keywords

Mathematics Subject Classification

Navigation