Abstract
In this paper, we develop a high-order semi-implicit (SI) structure-preserving finite difference weighted essentially nonoscillatory (WENO) scheme for magnetohydrodynamic (MHD) equations with a gravitational source. The proposed scheme is well-balanced for magnetic steady states, divergence-free for the magnetic field, conservative in the high Mach regime, and exhibits asymptotic preserving (AP) and asymptotically accurate (AA) properties in the incompressible low sonic Mach regime. The constrained transport method is applied to maintain a discrete divergence-free magnetic field. The sonic Mach number \(\varepsilon \) ranging from 0 to \(\mathcal {O}(1)\) is taken into account for all Mach flows. One of the crucial and novel ingredients is the addition of an evolution equation for the perturbation of potential temperature as an auxiliary equation to the conservative MHD system. This addition ensures a correct asymptotic low sonic Mach limit and helps to effectively capture shocks in the compressible high Mach regime. A well-balanced finite difference WENO scheme is designed for conservative variables of the resulting system. With stiffly accurate SI implicit-explicit Runge–Kutta time discretizations, the AP and AA properties are formally proven. Numerical experiments are provided to validate the effectiveness and structure-preserving properties of the proposed scheme.







Similar content being viewed by others
Code availability
The codes generated in this study are available from the corresponding author on reasonable request.
Data availability
No data sets were generated or analyzed during the current study.
References
Arun, K., Samantaray, S.: Asymptotic preserving low Mach number accurate IMEX finite volume schemes for the isentropic Euler equations. J. Sci. Comput. 82(2), 1–32 (2020)
Aschwanden, M.: Physics of the Solar Corona: An Introduction with Problems and Solutions. Springer, Berlin (2006)
Balsara, D.S.: Total variation diminishing scheme for adiabatic and isothermal magnetohydrodynamics. Astrophys. J. Suppl. Ser. 116(1), 133 (1998)
Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151(1), 149 (2004)
Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149(2), 270–292 (1999)
Bannon, P.R.: On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 53(23), 3618–3628 (1996)
Birke, C., Boscheri, W., Klingenberg, C.: A High Order Semi-Implicit Scheme for Ideal Magnetohydrodynamics. Springer Proceedings in Mathematics & Statistics, Finite Volume and Complex Applications X (2023)
Bispen, G., Arun, K.R., Lukáčová-Medvidová, M., Noelle, S.: IMEX large time step finite volume methods for low Froude number shallow water flows. Commun. Comput. Phys. 16(2), 307–347 (2014)
Bispen, G., Lukáčová-Medvid’ová, M., Yelash, L.: Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation. J. Comput. Phys. 335, 222–248 (2017)
Bogdan, T., Hansteen, M.C.V., McMurry, A., Rosenthal, C., Johnson, M., Petty-Powell, S., Zita, E., Stein, R., McIntosh, S., Nordlund, Å.: Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599(1), 626 (2003)
Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45(4), 1600–1621 (2007)
Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)
Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput. 68(3), 975–1001 (2016)
Boscarino, S., Russo, G., Scandurra, L.: All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics. J. Sci. Comput. 77(2), 850–884 (2018)
Boscarino, S., Qiu, J.-M., Russo, G., Xiong, T.: A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system. J. Comput. Phys. 392, 594–618 (2019)
Boscarino, S., Qiu, J., Russo, G., Xiong, T.: High order semi-implicit WENO schemes for all-Mach full Euler system of gas dynamics. SIAM J. Sci. Comput. 44(2), B368–B394 (2022)
Boscheri, W., Pareschi, L.: High order pressure-based semi-implicit IMEX schemes for the 3D Navier–Stokes equations at all Mach numbers. J. Comput. Phys. 434, 110206 (2021)
Boscheri, W., Dimarco, G., Loubère, R., Tavelli, M., Vignal, M.-H.: A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations. J. Comput. Phys. 415, 109486 (2020)
Brackbill, J.U., Barnes, D.C.: The effect of nonzero \(\nabla \cdot B\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980)
Chandrashekar, P., Klingenberg, C.: A second order well-balanced finite volume scheme for Euler equations with gravity. SIAM J. Sci. Comput. 37(3), B382–B402 (2015)
Chen, W., Wu, K., Xiong, T.: High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers. J. Comput. Phys. 488, 112240 (2023)
Cheng, B., Ju, Q., Schochet, S.: Three-scale singular limits of evolutionary PDEs. Arch. Ration. Mech. Anal. 229, 601–625 (2018)
Cheng, B., Ju, Q., Schochet, S.: Convergence rate estimates for the low Mach and Alfvén number three-scale singular limit of compressible ideal magnetohydrodynamics. ESAIM Math. Model. Numer. Anal. 55, S733–S759 (2021)
Christlieb, A.J., Rossmanith, J.A., Tang, Q.: Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics. J. Comput. Phys. 268, 302–325 (2014)
Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)
Christlieb, A.J., Feng, X., Seal, D.C., Tang, Q.: A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations. J. Comput. Phys. 316, 218–242 (2016)
Christlieb, A.J., Feng, X., Jiang, Y., Tang, Q.: A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes. SIAM J. Sci. Comput. 40(4), A2631–A2666 (2018)
Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 231(17), 5685–5704 (2012)
Cui, W., Ou, Y., Ren, D.: Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains. J. Math. Anal. Appl. 427(1), 263–288 (2015)
Dai, W., Woodward, P.R.: On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamical flows. Astrophys. J. 494(1), 317 (1998)
Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)
Degond, P., Jin, S., Liu, J.: Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull. Inst. Math. Academia Sinica 2(4), 851 (2007)
Dimarco, G., Loubère, R., Vignal, M.-H.: Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit. SIAM J. Sci. Comput. 39(5), A2099–A2128 (2017)
Dimarco, G., Loubère, R., Michel-Dansac, V., Vignal, M.-H.: Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime. J. Comput. Phys. 372, 178–201 (2018)
Dumbser, M., Balsara, D.S., Tavelli, M., Fambri, F.: A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics. Int. J. Numer. Meth. Fluids 89(1–2), 16–42 (2019)
Duran, A., Marche, F., Turpault, R., Berthon, C.: Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes. J. Comput. Phys. 287, 184–206 (2015)
Edelmann, P.V., Horst, L., Berberich, J.P., Andrassy, R., Higl, J., Leidi, G., Klingenberg, C., Röpke, F.: Well-balanced treatment of gravity in astrophysical fluid dynamics simulations at low Mach numbers. Astron. Astrophys. 652, A53 (2021)
Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332, 659–677 (1988)
Fambri, F.: A novel structure preserving semi-implicit finite volume method for viscous and resistive magnetohydrodynamics. Int. J. Numer. Meth. Fluids 93(12), 3447–3489 (2021)
Fuchs, F., McMurry, A., Mishra, S., Risebro, N., Waagan, K.: Finite volume methods for wave propagation in stratified magneto-atmospheres. Commun. Comput. Phys. 7(3), 473–509 (2010)
Fuchs, F., McMurry, A., Mishra, S., Risebro, N., Waagan, K.: High order well-balanced finite volume schemes for simulating wave propagation in stratified magnetic atmospheres. J. Comput. Phys. 229(11), 4033–4058 (2010)
Fuchs, F., McMurry, A., Mishra, S., Waagan, K.: Simulating waves in the upper solar atmosphere with SURYA: a well-balanced high-order finite-volume code. Astrophys. J. 732(2), 75 (2011)
Ghosh, D., Constantinescu, E.M.: Well-balanced, conservative finite difference algorithm for atmospheric flows. AIAA J. 54(4), 1370–1385 (2016)
Haack, J., Jin, S., Liu, J.-G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12(4), 955–980 (2012)
Han, J., Tang, H.: An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics. J. Comput. Phys. 220(2), 791–812 (2007)
Helzel, C., Rossmanith, J.A., Taetz, B.: An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations. J. Comput. Phys. 230(10), 3803–3829 (2011)
Huang, G., Xing, Y., Xiong, T.: High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers. J. Comput. Phys. 463, 111255 (2022)
Huang, G., Xing, Y., Xiong, T.: High order asymptotic preserving well-balanced finite difference WENO schemes for all Mach full Euler equations with gravity. Commun. Comput. Phys. (In Press). arXiv:2210.01641 (2023)
Jardin, S.: Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas. J. Comput. Phys. 231(3), 822–838 (2012)
Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)
Jiang, G.-S., Wu, C.-C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150(2), 561–594 (1999)
Jiang, S., Ju, Q., Li, F.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297(2), 371–400 (2010)
Jiang, S., Ju, Q., Li, F.: Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations. Nonlinearity 25(5), 1351 (2012)
Jiang, S., Ju, Q., Xu, X.: Small Alfvén number limit for incompressible magneto-hydrodynamics in a domain with boundaries. Sci. China Math. 62, 2229–2248 (2019)
Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)
Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Lecture notes for summer school on methods and models of kinetic theory (M &MKT), Porto Ercole (Grosseto, Italy), pp. 177–216 (2010)
Jin, S.: Asymptotic-preserving schemes for multiscale physical problems. Acta Numer. 31, 415–489 (2022)
Ju, Q., Schochet, S., Xu, X.: Singular limits of the equations of compressible ideal magneto-hydrodynamics in a domain with boundaries. Asymptot. Anal. 113(3), 137–165 (2019)
Kanbar, F., Touma, R., Klingenberg, C.: Well-balanced central scheme for the system of MHD equations with gravitational source term. Commun. Comput. Phys. 32(3), 878–898 (2022)
Käppeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. J. Comput. Phys. 259, 199–219 (2014)
Klein, R.: Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theoret. Comput. Fluid Dyn. 23(3), 161–195 (2009)
Krause, G.: Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres-explicit Godunov-type schemes with MUSCL reconstruction. Astron. Astrophys. 631, A68 (2019)
Leidi, G., Birke, C., Andrassy, R., Higl, J., Edelmann, P., Wiest, G., Klingenberg, C., Röpke, F.: A finite-volume scheme for modeling compressible magnetohydrodynamic flows at low Mach numbers in stellar interiors. Astron. Astrophys. 668, A143 (2022)
Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22(1), 413–442 (2005)
Li, G., Xing, Y.: Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Comput. Math. Appl. 75(6), 2071–2085 (2018)
Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231(6), 2655–2675 (2012)
Liu, X.: A well-balanced asymptotic preserving scheme for the two-dimensional shallow water equations over irregular bottom topography. SIAM J. Sci. Comput. 42(5), B1136–B1172 (2020)
Liu, X., Chertock, A., Kurganov, A.: An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces. J. Comput. Phys. 391, 259–279 (2019)
Liu, M., Feng, X., Wang, X.: Implementation of the HLL-GRP solver for multidimensional ideal MHD simulations based on finite volume method. J. Comput. Phys. 473, 111687 (2023)
Luo, J., Xu, K., Liu, N.: A well-balanced symplecticity-preserving gas-kinetic scheme for hydrodynamic equations under gravitational field. SIAM J. Sci. Comput. 33(5), 2356–2381 (2011)
Mamashita, T., Kitamura, K., Minoshima, T.: SLAU2-HLLD numerical flux with wiggle-sensor for stable low Mach magnetohydrodynamics simulations. Comput. Fluids 231, 105165 (2021)
Matthaeus, W.H., Brown, M.R.: Nearly incompressible magnetohydrodynamics at low Mach number. Phys. Fluids 31(12), 3634–3644 (1988)
Minoshima, T., Miyoshi, T.: A low-dissipation HLLD approximate Riemann solver for a very wide range of Mach numbers. J. Comput. Phys. 446, 110639 (2021)
Noelle, S., Bispen, G., Arun, K.R., Lukáčová-Me\(\acute{\text{d}}\)vidová, M., Munz, C.-D.: A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36(6), B989–B1024 (2014)
Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37, 123–146 (2010)
Ogura, Y., Phillips, N.A.: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19(2), 173–179 (1962)
Pareschi, L., Russo, G.: Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(112), 129–155 (2005)
Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics. In: Upwind and High-Resolution Schemes, pp. 570–583. Springer, Berlin (1997)
Powell, K.G., Roe, P.L., Myong, R., Gombosi, T.: An upwind scheme for magnetohydrodynamics. In: 12th Computational Fluid Dynamics Conference, p. 1704 (1995)
Rosenthal, C., Bogdan, T., Carlsson, M., Dorch, S., Hansteen, V., McIntosh, S., McMurry, A., Nordlund, Å., Stein, R.: Waves in the magnetized solar atmosphere. I. Basic processes and internetwork oscillations. Astrophys. J. 564(1), 508 (2002)
Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pp. 325–432 (1998)
Shun’ichi, G.: Singular limit of the incompressible ideal magneto-fluid motion with respect to the Alfvén number. Hokkaido Math. J. 19, 175–187 (1990)
Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: Athena: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178(1), 137 (2008)
Tang, M.: Second order method for isentropic Euler equation in the low Mach number regime. Kinet. Relat. Models 5(1), 155–184 (2012)
Tang, H., Xu, K.: A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics. J. Comput. Phys. 165(1), 69–88 (2000)
Tang, Q., Chacon, L., Kolev, T.V., Shadid, J.N., Tang, X.-Z.: An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD. J. Comput. Phys. 454, 110967 (2022)
Tavelli, M., Dumbser, M.: A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers. J. Comput. Phys. 341, 341–376 (2017)
Thomann, A., Puppo, G., Klingenberg, C.: An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity. J. Comput. Phys. 420, 109723 (2020)
Vater, S., Klein, R.: A semi-implicit multiscale scheme for shallow water flows at low Froude number. Commun. Appl. Math. Comput. Sci. 13(2), 303–336 (2018)
Wu, K., Shu, C.-W.: A provably positive discontinuous Galerkin method for multidimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput. 40(5), B1302–B1329 (2018)
Wu, K., Shu, C.-W.: Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes. Numer. Math. 142(4), 995–1047 (2019)
Wu, K., Xing, Y.: Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: positivity and well-balancedness. SIAM J. Sci. Comput. 43(1), A472–A510 (2021)
Wu, K., Jiang, H., Shu, C.-W.: Provably positive central discontinuous Galerkin schemes via geometric quasilinearization for ideal MHD equations. SIAM J. Numer. Anal. 61(1), 250–285 (2023)
Xing, Y., Shu, C.-W.: High order well-balanced WENO scheme for the gas dynamics equations under gravitational fields. SIAM J. Sci. Comput. 54(2), 645–662 (2013)
Xu, Z., Balsara, D.S., Du, H.: Divergence-free WENO reconstruction-based finite volume scheme for solving ideal MHD equations on triangular meshes. Commun. Comput. Phys. 19(4), 841–880 (2016)
Zank, G.P., Matthaeus, W.: Nearly incompressible fluids. II: Magnetohydrodynamics, turbulence, and waves. Phys. Fluids A Fluid Dyn. 5(1), 257–273 (1993)
Funding
The first and the third authors are partially supported by National Key R & D Program of China No. 2022YFA1004500, NSFC grant No. 11971025, NSF of Fujian Province No. 2023J02003, and the Strategic Priority Research Program of Chinese Academy of Sciences Grant No. XDA25010401. The work of Kailiang Wu is partially supported by National Natural Science Foundation of China (Grant No. 12171227) and Shenzhen Science and Technology Program (Grant No. RCJC20221008092757098).
Author information
Authors and Affiliations
Contributions
Wei Chen: Conceptualization, Formal analysis, Investigation, Methodology, Writing. Kailiang Wu: Conceptualization, Formal analysis, Methodology, Writing. Tao Xiong: Conceptualization, Formal analysis, Methodology, Writing, Funding acquisition.
Corresponding author
Ethics declarations
Conflict of interest
We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, W., Wu, K. & Xiong, T. High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers. J Sci Comput 99, 36 (2024). https://doi.org/10.1007/s10915-024-02492-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02492-7