Skip to main content
Log in

A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a robust randomized indicator method for the reliable detection of eigenvalue existence within an interval for symmetric matrices A. An indicator tells the eigenvalue existence based on some statistical norm estimators for a spectral projector. Previous work on eigenvalue indicators relies on a threshold which is empirically chosen, thus often resulting in under or over detection. In this paper, we use rigorous statistical analysis to guide the design of a robust indicator. Multiple randomized estimators for a contour integral operator in terms of A are analyzed. In particular, when A has eigenvalues inside a given interval, we show that the failure probability (for the estimators to return very small estimates) is extremely low. This enables to design a robust rejection indicator based on the control of the failure probability. We also give a prototype framework to illustrate how the indicator method may be applied numerically for eigenvalue detection and may potentially serve as a new way to design randomized symmetric eigenvalue solvers. Unlike previous indicator methods that only detect eigenvalue existence, the framework also provides a way to find eigenvectors with little extra cost by reusing computations from indicator evaluations. Extensive numerical tests show the reliability of the eigenvalue detection in multiple aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data for the numerical tests is available upon reasonable request.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1965)

    Google Scholar 

  2. Aktulga, H.M., Lin, L., Haine, C., Ng, E., Yang, C.: Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method. Parallel Comput. 40, 195–212 (2014)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N., David, G., Jerison, D., Mayboroda, S., Filoche, M.: Effective confining potential of quantum states in disordered media. Phys. Rev. Lett. 116, 056602 (2016)

    Article  Google Scholar 

  4. Austin, A.P., Trefethen, L.N.: Computing eigenvalues of real symmetric matrices with rational filters in real arithmetic. SIAM J. Sci. Comput. 37, A1365–A1387 (2015)

    Article  MathSciNet  Google Scholar 

  5. Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58, 8 (2011)

    Article  MathSciNet  Google Scholar 

  6. Balabanov, O., Grigori, L.: Randomized block Gram-Schmidt process for solution of linear systems and eigenvalue problems, arXiv:2111.14641 (2021)

  7. Bujanovic, Z., Kressner, D.: Norm and trace estimation with random rank-one vectors. SIAM J. Matrix Anal. Appl. 42, 202–223 (2021)

    Article  MathSciNet  Google Scholar 

  8. Cheng, W., Deng, C., Zhao, Z., Cai, Y., Zhang, Z., Feng, Z.: SPADE: A spectral method for black-box adversarial robustness evaluation. arXiv:2102.03716 (2021)

  9. Dixon, J.D.: Estimating extremal eigenvalues and condition numbers of matrices. SIAM J. Numer. Anal. 20, 812–814 (1983)

    Article  MathSciNet  Google Scholar 

  10. Drineas, P., Mahoney, M.: RandNLA: randomized numerical linear algebra. Commun. ACM 59, 80–90 (2016)

    Article  Google Scholar 

  11. Frommer, A., Glässner, U.: Restarted GMRES for shifted linear systems. SIAM J. Sci. Comput. 19, 15–26 (1998)

    Article  MathSciNet  Google Scholar 

  12. Gautschi, W.: Some elementary inequalities relating to the Gamma and incomplete Gamma function. J. Math. Phys. 38, 77–81 (1959)

    Article  MathSciNet  Google Scholar 

  13. Gu, M., Parlett, B., Ting, D., Xia, J.: Low-rank update eigensolver for supercell band structure calculations. J. Comput. Electron. 1, 411–414 (2002)

    Article  Google Scholar 

  14. Gudmundsson, T., Kenney, C.S., Laub, A.J.: Small-sample statistical estimates for matrix norms. SIAM J. Matrix Anal. Appl. 16, 776–792 (1995)

    Article  MathSciNet  Google Scholar 

  15. Güttel, S., Polizzi, E., Tang, P., Viaud, G.: Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Comput. 37, A2100–A2122 (2015)

    Article  MathSciNet  Google Scholar 

  16. Halko, N., Martinsson, P.G., Tropp, J.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011)

    Article  MathSciNet  Google Scholar 

  17. Huang, R., Struthers, A., Sun, J., Zhang, R.: Recursive integral method for transmission eigenvalues. J. Comput. Phys. 327, 830–840 (2016)

    Article  MathSciNet  Google Scholar 

  18. Huang, R., Sun, J., Yang, C.: Recursive integral method with Cayley transformation. Numer. Linear Algebra Appl. 25, e2199 (2018)

    Article  MathSciNet  Google Scholar 

  19. Huang, R., Sun, J., Yang, C.: A multilevel spectral indicator method for eigenvalues of large non-Hermitian matrices. CSIAM Trans. Appl. Math. 1, 463–477 (2020)

    Article  Google Scholar 

  20. Kalantzis, V., Xi, Y., Horesh, L.: Fast randomized non-Hermitian eigensolvers based on rational filtering and matrix partitioning. SIAM J. Sci. Comput. 43, S791–S815 (2021)

    Article  MathSciNet  Google Scholar 

  21. Kenney, C.S., Laub, A.J.: Small-sample statistical condition estimates for general matrix functions. SIAM J. Sci. Comput. 15, 36–61 (1994)

    Article  MathSciNet  Google Scholar 

  22. Laurent, B., Massart, P.: Adaptive estimation of a quadratic functional by model selection. Ann. Stat. 28, 1302–1338 (2000)

    Article  MathSciNet  Google Scholar 

  23. Li, R., Xi, Y., Vecharynski, E., Yang, C., Saad, Y.: A Thick-Restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci. Comput. 38, A2512–A2534 (2016)

    Article  MathSciNet  Google Scholar 

  24. Martinsson, P. G., Tropp, J.: Randomized Numerical Linear Algebra: Foundations & Algorithms, Acta Numerica. arXiv:2002.01387 (2020)

  25. Meyer, R. A., Musco, C., Musco, C., Woodruff, D. P.: Hutch++: Optimal stochastic trace estimation. In: Symposium on Simplicity in Algorithms (SOSA), pp. 142–155 (2021)

  26. Nakatsukasa, Y., Tropp, J. A.: Fast & accurate randomized algorithms for linear systems and eigenvalue problems. arXiv:2111.00113 (2021)

  27. Ou, X., Xia, J.: SuperDC: Superfast divide-and-conquer eigenvalue decomposition with improved stability for rank-structured matrices. SIAM J. Sci. Comput. 44, A3041–A3066 (2022)

    Article  MathSciNet  Google Scholar 

  28. Parlett, B. N.: The Symmetric Eigenvalue Problem, Classics Appl. Math. 20, SIAM (1998)

  29. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112 (2009)

    Article  Google Scholar 

  30. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM (2003)

  31. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd ed., SIAM (2011)

  32. Saibaba, A.K., Alexanderian, A., Ipsen, I.C.F.: Randomized matrix-free trace and log-determinant estimators. Numer. Math. 137, 353–395 (2017)

    Article  MathSciNet  Google Scholar 

  33. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 119–128 (2003)

    Article  MathSciNet  Google Scholar 

  34. SuiteSparse, http://faculty.cse.tamu.edu/davis/suitesparse.html

  35. Soodhalter, K.M., Szyld, D.B., Xue, F.: Krylov subspace recycling for sequences of shifted linear systems. Appl. Numer. Math. 81, 105–118 (2014)

    Article  MathSciNet  Google Scholar 

  36. Tang, P., Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl. 35, 354–390 (2014)

    Article  MathSciNet  Google Scholar 

  37. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)

    Article  MathSciNet  Google Scholar 

  38. Tropp, J.A.: Randomized block Krylov methods for approximating extreme eigenvalues. Numer. Math. 150, 217–255 (2022)

    Article  MathSciNet  Google Scholar 

  39. Van Barel, M.: Designing rational filter functions for solving eigenvalue problems by contour integration. Linear Algebra Appl. 502, 346–365 (2016)

    Article  MathSciNet  Google Scholar 

  40. Wendel, J.G.: Note on the gamma function. Am. Math. Mon. 55, 563–564 (1948)

    Article  MathSciNet  Google Scholar 

  41. Williams, J.D.: An approximation to the probability integral. Ann. Math. Stat. 17, 363–365 (1946)

    Article  MathSciNet  Google Scholar 

  42. Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of matrices. Appl. Comput. Harmon. Anal. 25, 335–366 (2008)

    Article  MathSciNet  Google Scholar 

  43. Xi, Y., Saad, Y.: Computing partial spectra with least-squares rational filters. SIAM J. Sci. Comput. 38, A3020–A3045 (2016)

    Article  MathSciNet  Google Scholar 

  44. Xi, Y., Xia, J., Chan, R.: A fast randomized eigensolver with structured LDL factorization update. SIAM J. Matrix Anal. Appl. 35, 974–996 (2014)

    Article  MathSciNet  Google Scholar 

  45. Xia, J.: Efficient structured multifrontal factorization for general large sparse matrices. SIAM J. Sci. Comput. 35, A832–A860 (2013)

    Article  MathSciNet  Google Scholar 

  46. Xia, J., Ye, Q.: Accurate randomized eigenvalue solution via the use of a single vector sample. preprint

  47. Ye, X., Xia, J., Chan, R., Cauley, S., Balakrishnan, V.: A fast contour-integral eigensolver for non-Hermitian matrices. SIAM J. Matrix Anal. Appl. 38, 1268–1297 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of J. Sun is funded in part by Simons Foundation Grant 711922 and NSF Grant 2109949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Xia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Sun, J. & Xia, J. A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection. J Sci Comput 100, 48 (2024). https://doi.org/10.1007/s10915-024-02599-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02599-x

Keywords

Mathematics Subject Classification