Abstract
We propose a robust randomized indicator method for the reliable detection of eigenvalue existence within an interval for symmetric matrices A. An indicator tells the eigenvalue existence based on some statistical norm estimators for a spectral projector. Previous work on eigenvalue indicators relies on a threshold which is empirically chosen, thus often resulting in under or over detection. In this paper, we use rigorous statistical analysis to guide the design of a robust indicator. Multiple randomized estimators for a contour integral operator in terms of A are analyzed. In particular, when A has eigenvalues inside a given interval, we show that the failure probability (for the estimators to return very small estimates) is extremely low. This enables to design a robust rejection indicator based on the control of the failure probability. We also give a prototype framework to illustrate how the indicator method may be applied numerically for eigenvalue detection and may potentially serve as a new way to design randomized symmetric eigenvalue solvers. Unlike previous indicator methods that only detect eigenvalue existence, the framework also provides a way to find eigenvectors with little extra cost by reusing computations from indicator evaluations. Extensive numerical tests show the reliability of the eigenvalue detection in multiple aspects.








Similar content being viewed by others
Data Availability
The data for the numerical tests is available upon reasonable request.
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1965)
Aktulga, H.M., Lin, L., Haine, C., Ng, E., Yang, C.: Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method. Parallel Comput. 40, 195–212 (2014)
Arnold, D.N., David, G., Jerison, D., Mayboroda, S., Filoche, M.: Effective confining potential of quantum states in disordered media. Phys. Rev. Lett. 116, 056602 (2016)
Austin, A.P., Trefethen, L.N.: Computing eigenvalues of real symmetric matrices with rational filters in real arithmetic. SIAM J. Sci. Comput. 37, A1365–A1387 (2015)
Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58, 8 (2011)
Balabanov, O., Grigori, L.: Randomized block Gram-Schmidt process for solution of linear systems and eigenvalue problems, arXiv:2111.14641 (2021)
Bujanovic, Z., Kressner, D.: Norm and trace estimation with random rank-one vectors. SIAM J. Matrix Anal. Appl. 42, 202–223 (2021)
Cheng, W., Deng, C., Zhao, Z., Cai, Y., Zhang, Z., Feng, Z.: SPADE: A spectral method for black-box adversarial robustness evaluation. arXiv:2102.03716 (2021)
Dixon, J.D.: Estimating extremal eigenvalues and condition numbers of matrices. SIAM J. Numer. Anal. 20, 812–814 (1983)
Drineas, P., Mahoney, M.: RandNLA: randomized numerical linear algebra. Commun. ACM 59, 80–90 (2016)
Frommer, A., Glässner, U.: Restarted GMRES for shifted linear systems. SIAM J. Sci. Comput. 19, 15–26 (1998)
Gautschi, W.: Some elementary inequalities relating to the Gamma and incomplete Gamma function. J. Math. Phys. 38, 77–81 (1959)
Gu, M., Parlett, B., Ting, D., Xia, J.: Low-rank update eigensolver for supercell band structure calculations. J. Comput. Electron. 1, 411–414 (2002)
Gudmundsson, T., Kenney, C.S., Laub, A.J.: Small-sample statistical estimates for matrix norms. SIAM J. Matrix Anal. Appl. 16, 776–792 (1995)
Güttel, S., Polizzi, E., Tang, P., Viaud, G.: Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Comput. 37, A2100–A2122 (2015)
Halko, N., Martinsson, P.G., Tropp, J.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011)
Huang, R., Struthers, A., Sun, J., Zhang, R.: Recursive integral method for transmission eigenvalues. J. Comput. Phys. 327, 830–840 (2016)
Huang, R., Sun, J., Yang, C.: Recursive integral method with Cayley transformation. Numer. Linear Algebra Appl. 25, e2199 (2018)
Huang, R., Sun, J., Yang, C.: A multilevel spectral indicator method for eigenvalues of large non-Hermitian matrices. CSIAM Trans. Appl. Math. 1, 463–477 (2020)
Kalantzis, V., Xi, Y., Horesh, L.: Fast randomized non-Hermitian eigensolvers based on rational filtering and matrix partitioning. SIAM J. Sci. Comput. 43, S791–S815 (2021)
Kenney, C.S., Laub, A.J.: Small-sample statistical condition estimates for general matrix functions. SIAM J. Sci. Comput. 15, 36–61 (1994)
Laurent, B., Massart, P.: Adaptive estimation of a quadratic functional by model selection. Ann. Stat. 28, 1302–1338 (2000)
Li, R., Xi, Y., Vecharynski, E., Yang, C., Saad, Y.: A Thick-Restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci. Comput. 38, A2512–A2534 (2016)
Martinsson, P. G., Tropp, J.: Randomized Numerical Linear Algebra: Foundations & Algorithms, Acta Numerica. arXiv:2002.01387 (2020)
Meyer, R. A., Musco, C., Musco, C., Woodruff, D. P.: Hutch++: Optimal stochastic trace estimation. In: Symposium on Simplicity in Algorithms (SOSA), pp. 142–155 (2021)
Nakatsukasa, Y., Tropp, J. A.: Fast & accurate randomized algorithms for linear systems and eigenvalue problems. arXiv:2111.00113 (2021)
Ou, X., Xia, J.: SuperDC: Superfast divide-and-conquer eigenvalue decomposition with improved stability for rank-structured matrices. SIAM J. Sci. Comput. 44, A3041–A3066 (2022)
Parlett, B. N.: The Symmetric Eigenvalue Problem, Classics Appl. Math. 20, SIAM (1998)
Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112 (2009)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM (2003)
Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd ed., SIAM (2011)
Saibaba, A.K., Alexanderian, A., Ipsen, I.C.F.: Randomized matrix-free trace and log-determinant estimators. Numer. Math. 137, 353–395 (2017)
Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 119–128 (2003)
SuiteSparse, http://faculty.cse.tamu.edu/davis/suitesparse.html
Soodhalter, K.M., Szyld, D.B., Xue, F.: Krylov subspace recycling for sequences of shifted linear systems. Appl. Numer. Math. 81, 105–118 (2014)
Tang, P., Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl. 35, 354–390 (2014)
Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)
Tropp, J.A.: Randomized block Krylov methods for approximating extreme eigenvalues. Numer. Math. 150, 217–255 (2022)
Van Barel, M.: Designing rational filter functions for solving eigenvalue problems by contour integration. Linear Algebra Appl. 502, 346–365 (2016)
Wendel, J.G.: Note on the gamma function. Am. Math. Mon. 55, 563–564 (1948)
Williams, J.D.: An approximation to the probability integral. Ann. Math. Stat. 17, 363–365 (1946)
Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of matrices. Appl. Comput. Harmon. Anal. 25, 335–366 (2008)
Xi, Y., Saad, Y.: Computing partial spectra with least-squares rational filters. SIAM J. Sci. Comput. 38, A3020–A3045 (2016)
Xi, Y., Xia, J., Chan, R.: A fast randomized eigensolver with structured LDL factorization update. SIAM J. Matrix Anal. Appl. 35, 974–996 (2014)
Xia, J.: Efficient structured multifrontal factorization for general large sparse matrices. SIAM J. Sci. Comput. 35, A832–A860 (2013)
Xia, J., Ye, Q.: Accurate randomized eigenvalue solution via the use of a single vector sample. preprint
Ye, X., Xia, J., Chan, R., Cauley, S., Balakrishnan, V.: A fast contour-integral eigensolver for non-Hermitian matrices. SIAM J. Matrix Anal. Appl. 38, 1268–1297 (2017)
Funding
The research of J. Sun is funded in part by Simons Foundation Grant 711922 and NSF Grant 2109949.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, Z., Sun, J. & Xia, J. A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection. J Sci Comput 100, 48 (2024). https://doi.org/10.1007/s10915-024-02599-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02599-x
Keywords
- Symmetric matrices
- Eigenvalue indicator
- Randomized estimator
- Statistical analysis
- Failure probability
- Shifted linear systems