Abstract
We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the two-dimensional Monge–Ampère equation. The first HDG method is devised to solve the nonlinear elliptic Monge–Ampère equation by using Newton’s method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge–Ampère equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to r-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This r-adaptivity methodology leads to the Monge–Ampère equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of r-adaptive high-order meshes on planar and curved domains.









Similar content being viewed by others
Data Availability
The datasets generated in this study are available from the corresponding author on reasonable request.
References
Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55(2), 205–267 (2013). https://doi.org/10.1137/110825960
Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991). https://doi.org/10.1002/cpa.3160440402
Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000). https://doi.org/10.1007/s002110050002
Benamou, J.D., Froese, B.D., Oberman, A.M.: Two numerical methods for the elliptic Monge–Ampère equation. ESAIM Math. Modell. Numer. Anal. 44(4), 737–758 (2010). https://doi.org/10.1051/m2an/2010017
Benamou, J.D., Froese, B.D., Oberman, A.M.: Numerical solution of the optimal transportation problem using the Monge–Ampère equation. J. Comput. Phys. 260, 107–126 (2014). https://doi.org/10.1016/j.jcp.2013.12.015
Caffarelli, L.A.: Interior \(W^2, p\) estimates for solutions of the Monge–Ampere equation. Ann. Math. 131(1), 135 (1990). https://doi.org/10.2307/1971510
Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006). https://doi.org/10.1016/j.cma.2005.05.023
Frisch, U., Matarrese, S., Mohayaee, R.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417(6886), 260–262 (2002). https://doi.org/10.1038/417260a. arXiv:astro-ph/0109483
Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011). https://doi.org/10.1016/j.jcp.2010.10.020
Oliker, V.: Mathematical aspects of design of beam shaping surfaces in geometrical optics. In: Trends in nonlinear analysis, pp. 193–224. Springer, Berlin (2003). https://doi.org/10.1007/978-3-662-05281-54
Prins, C.R., Ten Thije Boonkkamp, J.H., Van Roosmalen, J., Ijzerman, W.L., Tukker, T.W.: A Monge–Ampère-solver for free-form reflector design. SIAM J. Sci. Comput. 36(3), B640–B660 (2014). https://doi.org/10.1137/130938876
Trudinger, N.S., Wang, X.-J.: The Monge–Ampere equation and its geometric applications. Handb. Geom. Anal. I, 467–524 (2008)
Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: classical solutions. IMA J. Numer. Anal. 35(3), 1150–1166 (2015). https://doi.org/10.1093/imanum/dru028
Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008). https://doi.org/10.1137/040621740
Brenner, S., Gudi, T., Neilan, M., Sung, L.-Y.: C0 penalty methods for the fully nonlinear Monge–Ampère equation. Math. Comput. 80(276), 1979–1995 (2011). https://doi.org/10.1090/s0025-5718-2011-02487-7
Brenner, S.C., Neilan, M.: Finite element approximations of the three dimensional Monge–Ampère equation. ESAIM Math. Modell. Numer. Anal. 46(5), 979–1001 (2012). https://doi.org/10.1051/m2an/2011067
Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in dimension two. ESAIM Control Optim. Calc. Var. 19(3), 780–810 (2013). https://doi.org/10.1051/cocv/2012033
Feng, X., Neilan, M.: Finite element approximations of general fully nonlinear second order elliptic partial differential equations based on the vanishing moment method. Comput. Math. Appl. 68(12), 2182–2204 (2014). https://doi.org/10.1016/j.camwa.2014.07.023
Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009). https://doi.org/10.1137/070710378. arXiv:0712.1241
Feng, X., Lewis, T.: Mixed interior penalty discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions. Numer. Methods Partial Differ. Equ. 30(5), 1538–1557 (2014). https://doi.org/10.1002/num.21856
Feng, X., Jensen, M.: Convergent semi-Lagrangian methods for the Monge–Ampère equation on unstructured grids. SIAM J. Numer. Anal. 55(2), 691–712 (2017). https://doi.org/10.1137/16M1061709
Feng, X., Lewis, T.: Nonstandard local discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions. J. Sci. Comput. 77(3), 1534–1565 (2018). https://doi.org/10.1007/s10915-018-0765-z. arXiv:1801.05877
Froese, B.D.: A numerical method for the elliptic Monge–Ampère equation with transport boundary conditions. SIAM J. Sci. Comput. 34(3), A1432–A1459 (2012). https://doi.org/10.1137/110822372. arXiv:1101.4981
Liu, H., Glowinski, R., Leung, S., Qian, J.: A finite element/operator-splitting method for the numerical solution of the three dimensional Monge–Ampère equation. J. Sci. Comput. 81(3), 2271–2302 (2019). https://doi.org/10.1007/s10915-019-01080-4
Lakkis, O., Pryer, T.: A finite element method for nonlinear elliptic problems. SIAM J. Sci. Comput. 35(4), A2025–A2045 (2013). https://doi.org/10.1137/120887655
Glowinski, R., Liu, H., Leung, S., Qian, J.: A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge–Ampère equation. J. Sci. Comput. 79(1), 1–47 (2019). https://doi.org/10.1007/s10915-018-0839-y
Delzanno, G.L., Chacón, L., Finn, J.M., Chung, Y., Lapenta, G.: An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge–Kantorovich optimization. J. Comput. Phys. 227(23), 9841–9864 (2008). https://doi.org/10.1016/j.jcp.2008.07.020
Budd, C.J., Williams, J.F.: Moving mesh generation using the parabolic Monge–Ampère equation. SIAM J. Sci. Comput. 31(5), 3438–3465 (2009). https://doi.org/10.1137/080716773
Budd, C.J., Russell, R.D., Walsh, E.: The geometry of r-adaptive meshes generated using optimal transport methods. J. Comput. Phys. 282, 113–137 (2015). https://doi.org/10.1016/j.jcp.2014.11.007. arXiv:1409.5361
Browne, P.A., Budd, C.J., Piccolo, C., Cullen, M.: Fast three dimensional r-adaptive mesh redistribution. J. Comput. Phys. 275, 174–196 (2014). https://doi.org/10.1016/j.jcp.2014.06.009
Chacón, L., Delzanno, G.L., Finn, J.M.: Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution. J. Comput. Phys. 230(1), 87–103 (2011). https://doi.org/10.1016/j.jcp.2010.09.013
Weller, H., Browne, P., Budd, C., Cullen, M.: Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge–Ampère type equation. J. Comput. Phys. 308, 102–123 (2016). https://doi.org/10.1016/j.jcp.2015.12.018. arXiv:1512.02935
McRae, A.T., Cotter, C.J., Budd, C.J.: Optimal-transport-based mesh adaptivity on the plane and sphere using finite elements. SIAM J. Sci. Comput. 40(2), A1121–A1148 (2018). https://doi.org/10.1137/16M1109515. arXiv:1612.08077
Sulman, M., Williams, J.F., Russell, R.D.: Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys. 230(9), 3302–3330 (2011). https://doi.org/10.1016/j.jcp.2011.01.025
Sulman, M.H., Nguyen, T.B., Haynes, R.D., Huang, W.: Domain decomposition parabolic Monge–Ampère approach for fast generation of adaptive moving meshes. Comput. Math. Appl. 84, 97–111 (2021). https://doi.org/10.1016/j.camwa.2020.12.007
Aparicio-Estrems, G., Gargallo-Peiró, A., Roca, X.: Combining high-order metric interpolation and geometry implicitization for curved r-adaption. CAD Comput. Aided Des. 157, 103478 (2023). https://doi.org/10.1016/j.cad.2023.103478
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)
Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)
Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009). https://doi.org/10.1016/j.jcp.2009.01.030
Cockburn, B., Mustapha, K.: A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130(2), 293–314 (2015). https://doi.org/10.1007/s00211-014-0661-x. arXiv:1409.7383
Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009). https://doi.org/10.1016/j.jcp.2009.08.030
Ueckermann, M.P., Lermusiaux, P.F.: High-order schemes for 2D unsteady biogeochemical ocean models. Ocean Dyn. 60(6), 1415–1445 (2010). https://doi.org/10.1007/s10236-010-0351-x
Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47(2), 1092–1125 (2009). https://doi.org/10.1137/080726653
Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of an HDG method for Stokes flow. Math. Comp. 80, 723–760 (2011)
Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010). https://doi.org/10.1007/s10915-010-9359-0
Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010). https://doi.org/10.1016/j.cma.2009.10.007
Ahnert, T., Bärwolff, G.: Numerical comparison of hybridized discontinuous Galerkin and finite volume methods for incompressible flow. Int. J. Numer. Meth. Fluids 76(5), 267–281 (2014). https://doi.org/10.1002/fld.3938
Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011). https://doi.org/10.1016/j.jcp.2010.10.032
Nguyen, N. C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods. In: Proceedings of the international conference on spectral and high order methods, pp. 63–84. Springer, Berlin (2009)
Nguyen, N. C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, pp. AIAA 2010–362. Orlando, Florida (2010)
Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012). https://doi.org/10.1016/j.jcp.2012.02.011
Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76(3), 1484–1501 (2018). https://doi.org/10.1007/s10915-018-0671-4. arXiv:1704.07569
Ueckermann, M.P., Lermusiaux, P.F.: Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016). https://doi.org/10.1016/j.jcp.2015.11.028
Ciucă, C., Fernandez, P., Christophe, A., Nguyen, N.C., Peraire, J.: Implicit hybridized discontinuous Galerkin methods for compressible magnetohydrodynamics. J. Comput. Phys. X 5, 100042 (2020). https://doi.org/10.1016/j.jcpx.2019.100042
Fernandez, P., Nguyen, N.C., Peraire, J.: The hybridized discontinuous Galerkin method for Implicit Large-Eddy simulation of transitional turbulent flows. J. Comput. Phys. 336, 308–329 (2017). https://doi.org/10.1016/j.jcp.2017.02.015
Franciolini, M., Fidkowski, K.J., Crivellini, A.: Efficient discontinuous Galerkin implementations and preconditioners for implicit unsteady compressible flow simulations. Comput. Fluids 203, 104542 (2020). https://doi.org/10.1016/j.compfluid.2020.104542. arXiv:1812.04789
Moro, D., Nguyeny, N. C., Peraire, J.: Navier-stokes solution using Hybridizable discontinuous Galerkin methods. In: 20th AIAA computational fluid dynamics conference 2011, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii, pp. AIAA–2011–3407 (2011). https://doi.org/10.2514/6.2011-3407. http://arc.aiaa.org/doi/abs/10.2514/6.2011-3407
Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012). https://doi.org/10.1016/j.jcp.2012.02.033
Nguyen, N.C., Peraire, J., Cockburn, B.: A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J. Comput. Phys. 302, 674–692 (2015). https://doi.org/10.1016/j.jcp.2015.09.024
Vila-Pérez, J., Giacomini, M., Sevilla, R., Huerta, A.: Hybridisable discontinuous Galerkin formulation of compressible flows. Arch. Comput. Methods Eng. 28(2), 753–784 (2021). https://doi.org/10.1007/s11831-020-09508-z
Vila-Pérez, J., Van Heyningen, R.L., Nguyen, N.-C., Peraire, J.: Exasim: generating discontinuous Galerkin codes for numerical solutions of partial differential equations on graphics processors. SoftwareX 20, 101212 (2022). https://doi.org/10.1016/j.softx.2022.101212
Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011). https://doi.org/10.1016/j.jcp.2011.05.018
Sánchez, M.A., Du, S., Cockburn, B., Nguyen, N.-C., Peraire, J.: Symplectic Hamiltonian finite element methods for electromagnetics. Comput. Methods Appl. Mech. Eng. 396, 114969 (2022). https://doi.org/10.1016/j.cma.2022.114969
Li, L., Lanteri, S., Perrussel, R.: A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3D time-harmonic Maxwell’s equations. J. Comput. Phys. 256, 563–581 (2014). https://doi.org/10.1016/j.jcp.2013.09.003
Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Meth. Eng. 80(8), 1058–1092 (2009)
Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. 33(3), 747–770 (2013). https://doi.org/10.1093/imanum/drs020
Fu, G., Cockburn, B., Stolarski, H.: Analysis of an HDG method for linear elasticity. Int. J. Numer. Meth. Eng. 102(3–4), 551–575 (2015)
Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87(309), 69–93 (2018)
Sánchez, M.A., Cockburn, B., Nguyen, N.C., Peraire, J.: Symplectic Hamiltonian finite element methods for linear elastodynamics. Comput. Methods Appl. Mech. Eng. 381, 113843 (2021). https://doi.org/10.1016/j.cma.2021.113843
Cockburn, B., Shen, J.: An algorithm for stabilizing hybridizable discontinuous Galerkin methods for nonlinear elasticity. Results Appl. Math. 1, 100001 (2019). https://doi.org/10.1016/j.rinam.2019.01.001
Fernandez, P., Christophe, A., Terrana, S., Nguyen, N.C., Peraire, J.: Hybridized discontinuous Galerkin methods for wave propagation. J. Sci. Comput. 77(3), 1566–1604 (2018). https://doi.org/10.1007/s10915-018-0811-x
Kabaria, H., Lew, A., Cockburn, B.: A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput. Methods Appl. Mech. Eng. 283, 303–329 (2015)
Terrana, S., Nguyen, N.C., Bonet, J., Peraire, J.: A hybridizable discontinuous Galerkin method for both thin and 3D nonlinear elastic structures. Comput. Methods Appl. Mech. Eng. 352, 561–585 (2019). https://doi.org/10.1016/J.CMA.2019.04.029
Bai, Y., Fidkowski, K.J.: Continuous artificial-viscosity shock capturing for hybrid discontinuous Galerkin on adapted meshes. AIAA J. 60(10), 5678–5691 (2022). https://doi.org/10.2514/1.J061783
Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation. J. Comput. Phys. 229(5), 1810–1827 (2010). https://doi.org/10.1016/j.jcp.2009.11.010
Ching, E.J., Lv, Y., Gnoffo, P., Barnhardt, M., Ihme, M.: Shock capturing for discontinuous Galerkin methods with application to predicting heat transfer in hypersonic flows. J. Comput. Phys. 376, 54–75 (2019). https://doi.org/10.1016/j.jcp.2018.09.016
Nguyen, N. C., Perairey, J.: An adaptive shock-capturing HDG method for compressible flows. In: 20th AIAA computational fluid dynamics conference 2011, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2011, pp. AIAA 2011–3060. https://doi.org/10.2514/6.2011-3060. http://arc.aiaa.org/doi/abs/10.2514/6.2011-3060
Moro, D., Nguyen, N.C., Peraire, J.: Dilation-based shock capturing for high-order methods. Int. J. Numer. Meth. Fluids 82(7), 398–416 (2016). https://doi.org/10.1002/fld.4223
Persson, P. O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting, Vol. 2, pp. 1408–1420. Reno, Neveda (2006). https://doi.org/10.2514/6.2006-112
Persson, P. O.: Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems. In: 21st AIAA computational fluid dynamics conference, p. 3061. San Diego, CA (2013). https://doi.org/10.2514/6.2013-3061
Funding
This work was supported by the United States Department of Energy under contract DE-NA0003965, the National Science Foundation under grant number NSF-PHY-2028125, the Air Force Office of Scientific Research under Grant No. FA9550-22-1-0356, and the MIT Portugal program under the seed grant number 6950138.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nguyen, N.C., Peraire, J. Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation. J Sci Comput 100, 44 (2024). https://doi.org/10.1007/s10915-024-02604-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02604-3