Skip to main content
Log in

On Numerical Integration and Conservation of Cell-Centered Finite Difference Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Conservation and numerical integration have been important issues for finite difference method related to robustness, reliability and accuracy requirements. In this paper, we discuss the relationship between the discretized Newton–Leibniz formula and four conservation and integration properties, including geometric conservation, flow conservation, surface integration and volume integration, for the multi-block based high-order cell-centered finite difference method. In order to achieve these conservation and integration properties, as well as multi-block compatibility, high-order accuracy, and stability within a unified methodology, we propose a new series of boundary schemes that incorporate all these constraints. To ensure geometric conservation, conservative metrics and Jacobian are adopted for coodinate transformation. To realize flow conservation, the width of the boundary stencil is enlarged to provide more degrees of freedom in order to meet the conservation constraints. To achieve uniformly high-order accuracy with arbitrary multi-block topology, cross-interface interpolation or differencing is avoided by utilizing one-sided scheme. To maintain stability, boundary interpolation scheme is designed as upwindly and compactly as possible. The proposed method is finally tested through a series of numerical cases, including a wave propagation and an isentropic vortex for accuracy verification, several acoustic tests to demonstrate the capability of handling arbitrary multi-block grid topology, a wavy channel and a closed flying wing problem for conservation verification. These numerical tests indicate that the new scheme possesses satisfactory conservation and integration properties while satisfying the requirements for high-order accuracy and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Liao, F.: On turbulent flow and aerodynamic noise of generic side-view mirror with cell-centred finite difference method. J. Turbul. 23(3), 97–123 (2022)

    Article  MathSciNet  Google Scholar 

  2. Lee, C., Seo, Y.: A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183(2), 438–469 (2002)

    Article  Google Scholar 

  3. Kim, T., Jeon, M., Lee, S., Shin, H.: Numerical simulation of flatback airfoil aerodynamic noise. Renew. Energy 65, 192–201 (2014)

    Article  Google Scholar 

  4. Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41(3–4), 192–300 (2005)

    Article  Google Scholar 

  5. Deng, X., Mao, M., Guohua, T., Zhang, H., Zhang, Y.: High-order and high accurate CFD methods and their applications for complex grid problems. Commun. Comput. Phys. 11(4), 1081–1102 (2012)

    Article  MathSciNet  Google Scholar 

  6. Zhi Jian Wang: High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Prog. Aerosp. Sci. 43(1–3), 1–41 (2007)

    Article  Google Scholar 

  7. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  Google Scholar 

  8. Sun, Z.-S., Ren, Y.-X., Larricq, C., Zhang, S., Yang, Y.: A class of finite difference schemes with low dispersion and controllable dissipation for dns of compressible turbulence. J. Comput. Phys. 230(12), 4616–4635 (2011)

    Article  MathSciNet  Google Scholar 

  9. Li, Y., Ren, Y.-X.: A scale-aware dispersion-relation-preserving finite difference scheme for computational aeroacoustics. Phys. Fluids 35(3), 036114 (2023)

    Article  Google Scholar 

  10. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018)

    Article  MathSciNet  Google Scholar 

  11. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  12. Zhong, X., Tatineni, M.: High-order non-uniform grid schemes for numerical simulation of hypersonic boundary-layer stability and transition. J. Comput. Phys. 190(2), 419–458 (2003)

    Article  MathSciNet  Google Scholar 

  13. Qin, J., Chen, Y., Deng, X.: On the role of global conservation property for finite difference schemes. J. Comput. Phys. 440, 110437 (2021)

    Article  MathSciNet  Google Scholar 

  14. Merriman, B.: Understanding the Shu–Osher conservative finite difference form. J. Sci. Comput. 19, 309–322 (2003)

    Article  MathSciNet  Google Scholar 

  15. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  16. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  17. Nicoud, F.: Conservative high-order finite-difference schemes for low-mach number flows. J. Comput. Phys. 158(1), 71–97 (2000)

    Article  MathSciNet  Google Scholar 

  18. Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90–124 (1998)

    Article  MathSciNet  Google Scholar 

  19. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)

    Article  MathSciNet  Google Scholar 

  20. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)

    Article  MathSciNet  Google Scholar 

  21. Hicken, J.E., Zingg, D.W.: Parallel Newton–Krylov solver for the Euler equations discretized using simultaneous approximation terms. AIAA J. 46(11), 2773–2786 (2008)

    Article  Google Scholar 

  22. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Simultaneous approximation terms for multi-dimensional summation-by-parts operators. J. Sci. Comput. 75, 83–110 (2018)

    Article  MathSciNet  Google Scholar 

  23. Mattsson, K., O’Reilly, O.: Compatible diagonal-norm staggered and upwind SBP operators. J. Comput. Phys. 352, 52–75 (2018)

    Article  MathSciNet  Google Scholar 

  24. Qin, J.-X., Chen, Y.-M., Deng, X.-G.: Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations. Chin. Phys. B 28(10), 104701 (2019)

    Article  Google Scholar 

  25. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  26. Terashima, H., Kawai, S., Yamanishi, N.: High-resolution numerical method for supercritical flows with large density variations. AIAA J. 49(12), 2658–2672 (2011)

    Article  Google Scholar 

  27. Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)

    Article  MathSciNet  Google Scholar 

  28. Shen, X., Mohd-Zaid, F., Francis, R.: Runge phenomenon: a virtual artifact in image processing. In: Proceedings of the international conference on image processing, computer vision, and pattern recognition (IPCV). The Steering Committee of The World Congress in Computer Science, Computer, p. 1 (2012)

  29. Shukla, R.K., Zhong, X.: Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation. J. Comput. Phys. 204(2), 404–429 (2005)

    Article  MathSciNet  Google Scholar 

  30. Deng, X., Chen, Y.: A novel strategy for deriving high-order stable boundary closures based on global conservation, I: Basic formulas. J. Comput. Phys. 372, 80–106 (2018)

    Article  MathSciNet  Google Scholar 

  31. Qin, J., Chen, Y., Lin, Yu., Deng, X.: On construction of shock-capturing boundary closures for high-order finite difference method. Comput. Fluids 255, 105818 (2023)

    Article  MathSciNet  Google Scholar 

  32. Brady, P.T., Livescu, D.: High-order, stable, and conservative boundary schemes for central and compact finite differences. Comput. Fluids 183, 84–101 (2019)

    Article  MathSciNet  Google Scholar 

  33. Deng, X., Min, Y., Mao, M., Liu, H., Guohua, T., Zhang, H.: Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 239, 90–111 (2013)

    Article  MathSciNet  Google Scholar 

  34. Liao, F., Ye, Z., Zhang, L.: Extending geometric conservation law to cell-centered finite difference methods on stationary grids. J. Comput. Phys. 284, 419–433 (2015)

    Article  MathSciNet  Google Scholar 

  35. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)

    Article  MathSciNet  Google Scholar 

  36. Liao, F., He, G.: High-order adapter schemes for cell-centered finite difference method. J. Comput. Phys. 403, 109090 (2020)

    Article  MathSciNet  Google Scholar 

  37. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  38. Jin, Y., Liao, F., Cai, J., Morris, P.J.: Investigation on rod-airfoil noise with high-order cell-centered finite difference method and acoustic analogy. Aerosp. Sci. Technol. 102, 105851 (2020)

    Article  Google Scholar 

  39. Jin, Y., Liao, F., Cai, J.: Optimized low-dissipation and low-dispersion schemes for compressible flows. J. Comput. Phys. 371, 820–849 (2018)

    Article  MathSciNet  Google Scholar 

  40. Deng, X.: High-order accurate dissipative weighted compact nonlinear schemes. Sci. China, Ser. A Math. 45, 356–370 (2002)

    Article  MathSciNet  Google Scholar 

  41. Hardin, Jay C., Ray Ristorcelli, J., Tam, Christopher K. W.: Icase/larc workshop on benchmark problems in computational aeroacoustics (CAA). (1995)

  42. Dahl, Milo D.: Fourth computational aeroacoustics (CAA) workshop on benchmark problems. In: Fourth computational aeroacoustics (CAA) workshop on benchmark problems, number NASA/CP-2004-212954, (2004)

  43. Mahendhran, M., Balaji, C.: Improved efficient modeling of gust flow over flying configurations using overset mesh approach. In: 21st Annual CFD Symposium, (2019)

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant Nos. 12102360, 92152301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liao.

Ethics declarations

Conflict of interest

This work is supported by the National Natural Science Foundation of China (Nos. 12102360, 92152301). The authors have no Conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liao, F. & Ye, Z. On Numerical Integration and Conservation of Cell-Centered Finite Difference Method. J Sci Comput 100, 73 (2024). https://doi.org/10.1007/s10915-024-02630-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02630-1

Keywords

Navigation