Abstract
Conservation and numerical integration have been important issues for finite difference method related to robustness, reliability and accuracy requirements. In this paper, we discuss the relationship between the discretized Newton–Leibniz formula and four conservation and integration properties, including geometric conservation, flow conservation, surface integration and volume integration, for the multi-block based high-order cell-centered finite difference method. In order to achieve these conservation and integration properties, as well as multi-block compatibility, high-order accuracy, and stability within a unified methodology, we propose a new series of boundary schemes that incorporate all these constraints. To ensure geometric conservation, conservative metrics and Jacobian are adopted for coodinate transformation. To realize flow conservation, the width of the boundary stencil is enlarged to provide more degrees of freedom in order to meet the conservation constraints. To achieve uniformly high-order accuracy with arbitrary multi-block topology, cross-interface interpolation or differencing is avoided by utilizing one-sided scheme. To maintain stability, boundary interpolation scheme is designed as upwindly and compactly as possible. The proposed method is finally tested through a series of numerical cases, including a wave propagation and an isentropic vortex for accuracy verification, several acoustic tests to demonstrate the capability of handling arbitrary multi-block grid topology, a wavy channel and a closed flying wing problem for conservation verification. These numerical tests indicate that the new scheme possesses satisfactory conservation and integration properties while satisfying the requirements for high-order accuracy and stability.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig19_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig20_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig21_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig22_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig23_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10915-024-02630-1/MediaObjects/10915_2024_2630_Fig24_HTML.png)
Similar content being viewed by others
Data availability
Data will be made available on request.
References
Liao, F.: On turbulent flow and aerodynamic noise of generic side-view mirror with cell-centred finite difference method. J. Turbul. 23(3), 97–123 (2022)
Lee, C., Seo, Y.: A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183(2), 438–469 (2002)
Kim, T., Jeon, M., Lee, S., Shin, H.: Numerical simulation of flatback airfoil aerodynamic noise. Renew. Energy 65, 192–201 (2014)
Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41(3–4), 192–300 (2005)
Deng, X., Mao, M., Guohua, T., Zhang, H., Zhang, Y.: High-order and high accurate CFD methods and their applications for complex grid problems. Commun. Comput. Phys. 11(4), 1081–1102 (2012)
Zhi Jian Wang: High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Prog. Aerosp. Sci. 43(1–3), 1–41 (2007)
Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)
Sun, Z.-S., Ren, Y.-X., Larricq, C., Zhang, S., Yang, Y.: A class of finite difference schemes with low dispersion and controllable dissipation for dns of compressible turbulence. J. Comput. Phys. 230(12), 4616–4635 (2011)
Li, Y., Ren, Y.-X.: A scale-aware dispersion-relation-preserving finite difference scheme for computational aeroacoustics. Phys. Fluids 35(3), 036114 (2023)
Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018)
Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)
Zhong, X., Tatineni, M.: High-order non-uniform grid schemes for numerical simulation of hypersonic boundary-layer stability and transition. J. Comput. Phys. 190(2), 419–458 (2003)
Qin, J., Chen, Y., Deng, X.: On the role of global conservation property for finite difference schemes. J. Comput. Phys. 440, 110437 (2021)
Merriman, B.: Understanding the Shu–Osher conservative finite difference form. J. Sci. Comput. 19, 309–322 (2003)
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J. Comput. Phys. 83(1), 32–78 (1989)
Nicoud, F.: Conservative high-order finite-difference schemes for low-mach number flows. J. Comput. Phys. 158(1), 71–97 (2000)
Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90–124 (1998)
Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)
Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)
Hicken, J.E., Zingg, D.W.: Parallel Newton–Krylov solver for the Euler equations discretized using simultaneous approximation terms. AIAA J. 46(11), 2773–2786 (2008)
Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Simultaneous approximation terms for multi-dimensional summation-by-parts operators. J. Sci. Comput. 75, 83–110 (2018)
Mattsson, K., O’Reilly, O.: Compatible diagonal-norm staggered and upwind SBP operators. J. Comput. Phys. 352, 52–75 (2018)
Qin, J.-X., Chen, Y.-M., Deng, X.-G.: Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations. Chin. Phys. B 28(10), 104701 (2019)
Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)
Terashima, H., Kawai, S., Yamanishi, N.: High-resolution numerical method for supercritical flows with large density variations. AIAA J. 49(12), 2658–2672 (2011)
Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)
Shen, X., Mohd-Zaid, F., Francis, R.: Runge phenomenon: a virtual artifact in image processing. In: Proceedings of the international conference on image processing, computer vision, and pattern recognition (IPCV). The Steering Committee of The World Congress in Computer Science, Computer, p. 1 (2012)
Shukla, R.K., Zhong, X.: Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation. J. Comput. Phys. 204(2), 404–429 (2005)
Deng, X., Chen, Y.: A novel strategy for deriving high-order stable boundary closures based on global conservation, I: Basic formulas. J. Comput. Phys. 372, 80–106 (2018)
Qin, J., Chen, Y., Lin, Yu., Deng, X.: On construction of shock-capturing boundary closures for high-order finite difference method. Comput. Fluids 255, 105818 (2023)
Brady, P.T., Livescu, D.: High-order, stable, and conservative boundary schemes for central and compact finite differences. Comput. Fluids 183, 84–101 (2019)
Deng, X., Min, Y., Mao, M., Liu, H., Guohua, T., Zhang, H.: Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 239, 90–111 (2013)
Liao, F., Ye, Z., Zhang, L.: Extending geometric conservation law to cell-centered finite difference methods on stationary grids. J. Comput. Phys. 284, 419–433 (2015)
Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)
Liao, F., He, G.: High-order adapter schemes for cell-centered finite difference method. J. Comput. Phys. 403, 109090 (2020)
Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)
Jin, Y., Liao, F., Cai, J., Morris, P.J.: Investigation on rod-airfoil noise with high-order cell-centered finite difference method and acoustic analogy. Aerosp. Sci. Technol. 102, 105851 (2020)
Jin, Y., Liao, F., Cai, J.: Optimized low-dissipation and low-dispersion schemes for compressible flows. J. Comput. Phys. 371, 820–849 (2018)
Deng, X.: High-order accurate dissipative weighted compact nonlinear schemes. Sci. China, Ser. A Math. 45, 356–370 (2002)
Hardin, Jay C., Ray Ristorcelli, J., Tam, Christopher K. W.: Icase/larc workshop on benchmark problems in computational aeroacoustics (CAA). (1995)
Dahl, Milo D.: Fourth computational aeroacoustics (CAA) workshop on benchmark problems. In: Fourth computational aeroacoustics (CAA) workshop on benchmark problems, number NASA/CP-2004-212954, (2004)
Mahendhran, M., Balaji, C.: Improved efficient modeling of gust flow over flying configurations using overset mesh approach. In: 21st Annual CFD Symposium, (2019)
Funding
Funding was provided by National Natural Science Foundation of China (Grant Nos. 12102360, 92152301).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
This work is supported by the National Natural Science Foundation of China (Nos. 12102360, 92152301). The authors have no Conflict of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, Z., Liao, F. & Ye, Z. On Numerical Integration and Conservation of Cell-Centered Finite Difference Method. J Sci Comput 100, 73 (2024). https://doi.org/10.1007/s10915-024-02630-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02630-1