Skip to main content
Log in

An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose, analyze, and test a penalty projection-based robust efficient and accurate algorithm for the Uncertainty Quantification (UQ) of the time-dependent Magnetohydrodynamic (MHD) flow problems in convection-dominated regimes. The algorithm uses the Elsässer variables formulation and discrete Hodge decomposition to decouple the stochastic MHD system into four sub-problems (at each time-step for each realization) which are much easier to solve than solving the coupled saddle point problems. Each of the sub-problems is designed in a sophisticated way so that at each time-step the system matrix remains the same for all the realizations but with different right-hand-side vectors which allows saving a huge amount of computer memory and computational time. Moreover, the scheme is equipped with Ensemble Eddy Viscosity (EEV) and grad-div stabilization terms. The unconditional stability with respect to the time-step size of the algorithm is proven rigorously. We prove the proposed scheme converges to an equivalent non-projection-based coupled MHD scheme for large grad-div stabilization parameter values. We examine how Stochastic Collocation Methods (SCMs) can be combined with the proposed penalty projection UQ algorithm. Finally, a series of numerical experiments are given which verify the predicted convergence rates, show the algorithm’s performance on benchmark channel flow over a rectangular step, a regularized lid-driven cavity problem with high random Reynolds number and high random magnetic Reynolds number, and the impact of the EEV stabilization in the MHD UQ algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data will be provided upon request.

References

  1. Aggul, M.: A grad-div stabilized penalty projection algorithm for fluid-fluid interaction. Appl. Math. Comput. 414, 126670 (2022)

    MathSciNet  Google Scholar 

  2. Aggul, M., Eroglu, F.G., Kaya, S.: Artificial compression method for MHD system in Elsässer variables. Appl. Numer. Math. 185, 72–87 (2023)

    MathSciNet  Google Scholar 

  3. Akbas, M., Kaya, S., Mohebujjaman, M., Rebholz, L.: Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in Elsässer variable. Int. J. Numer. Anal. Model. 13(1), 90–113 (2016)

    MathSciNet  Google Scholar 

  4. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    MathSciNet  Google Scholar 

  5. Balajewicz, M.J., Dowell, E.H., Bernd, R.N.: Low-dimensional modelling of high-reynolds-number shear flows incorporating constraints from the Navier-Stokes equation. J. Fluid Mech. 729, 285 (2013)

    MathSciNet  Google Scholar 

  6. Berselli, L.C., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Springer, Berlin (2006)

    Google Scholar 

  7. Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  8. Case, M., Labovsky, A., Rebholz, L.G., Wilson, N.: A high physical accuracy method for incompressible magnetohydrodynamics. Int. J. Numer. Anal. Model. Ser. B 1(2), 219–238 (2010)

    MathSciNet  Google Scholar 

  9. Chen, S., Zhu, Y.: Subpattern-based principle component analysis. Pattern Recogn. 37(5), 1081–1083 (2004)

    Google Scholar 

  10. Chkifa, A., Cohen, A., Migliorati, G., Nobile, F., Tempone, R.: Discrete least squares polynomial approximation with random evaluations- application to parametric and stochastic elliptic PDEs. ESAIM Math. Model. Num. Anal. 49, 815–837 (2015)

    MathSciNet  Google Scholar 

  11. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    MathSciNet  Google Scholar 

  12. Çıbık, A., Eroglu, F.G., Kaya, S.: Analysis of second order time filtered backward Euler method for MHD equations. J. Sci. Comput. 82(2), 1–25 (2020)

    MathSciNet  Google Scholar 

  13. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2001)

    Google Scholar 

  14. Davis, T.A.: Algorithm 832: UMFPACK v4.3–an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. (TOMS) 30(2), 196–199 (2004)

    MathSciNet  Google Scholar 

  15. Erkmen, D., Kaya, S., Çıbık, A.: A second order decoupled penalty projection method based on deferred correction for MHD in Elsässer variable. J. Comput. Appl. Math. 371, 112694 (2020)

    MathSciNet  Google Scholar 

  16. Erkmen, D., Labovsky, A.: Note on the usage of grad-div stabilization for the penalty-projection algorithm in magnetohydrodynamics. Appl. Math. Comput. 349, 48–52 (2019)

    MathSciNet  Google Scholar 

  17. Fick, L., Maday, Y., Patera, A.T., Taddei, T.: A stabilized POD model for turbulent flows over a range of Reynolds numbers: optimal parameter sampling and constrained projection. J. Comput. Phys. 371, 214–243 (2018)

    MathSciNet  Google Scholar 

  18. Fujita, T., Stensrud, D.J., Dowell, D.C.: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Weather Rev. 135(5), 1846–1868 (2007)

    Google Scholar 

  19. Girault, V., Raviart, V.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1986)

    Google Scholar 

  20. Gunzburger, M., Iliescu, T., Mohebujjaman, M., Schneier, M.: An evolve-filter-relax stabilized reduced order stochastic collocation method for the time-dependent Navier-Stokes equations. SIAM/ASA J. Uncertain. Quantif. 7(4), 1162–1184 (2019)

    MathSciNet  Google Scholar 

  21. Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)

    MathSciNet  Google Scholar 

  22. Hecht, F.: New development in Freefem++. J. Numer. Math. 20, 251–266 (2012)

    MathSciNet  Google Scholar 

  23. Heister, T., Mohebujjaman, M., Rebholz, L.: Decoupled, unconditionally stable, higher order discretizations for MHD flow simulation. J. Sci. Comput. 71, 21–43 (2017)

    MathSciNet  Google Scholar 

  24. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem part iv: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    MathSciNet  Google Scholar 

  25. Hossain, A., Molla, M.M., Kamrujjaman, M., Mohebujjaman, M., Saha, S.C.: MHD mixed convection of non-Newtonian Bingham nanofluid in a wavy enclosure with temperature-dependent thermophysical properties: A sensitivity analysis by response surface methodology. Energies 16(11), 4408 (2023)

    Google Scholar 

  26. Jiang, N.: A higher order ensemble simulation algorithm for fluid flows. J. Sci. Comput. 64, 264–288 (2015)

    MathSciNet  Google Scholar 

  27. Jiang, N.: A second order ensemble method based on a blended BDF timestepping scheme for time dependent Navier-Stokes equations. Numer. Methods Partial Differ. Equ. 33(1), 34–61 (2017)

    Google Scholar 

  28. Jiang, N., Kaya, S., Layton, W.: Analysis of model variance for ensemble based turbulence modeling. Comput. Methods Appl. Math. 15, 173–188 (2015)

    MathSciNet  Google Scholar 

  29. Jiang, N., Layton, W.: An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 4, 273–301 (2014)

    MathSciNet  Google Scholar 

  30. Jiang, N., Layton, W.: Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer. Methods Partial Differ. Equ. 31, 630–651 (2015)

    MathSciNet  Google Scholar 

  31. Jiang, N., Layton, W., McLaughlin, M., Rong, Y., Zhao, H.: On the foundations of eddy viscosity models of turbulence. Fluids 5(4), 167 (2020)

    Google Scholar 

  32. Jiang, N., Li, Y., Yang, H.: An artificial compressibility Crank-Nicolson leap-frog method for the Stokes-Darcy model and application in ensemble simulations. SIAM J. Numer. Anal. 59(1), 401–428 (2021)

    MathSciNet  Google Scholar 

  33. Jiang, N., Yang, H.: Unconditionally stable, second order, decoupled ensemble schemes for computing evolutionary Boussinesq equations. Appl. Numer. Math. 192, 241–260 (2023)

    MathSciNet  Google Scholar 

  34. Johnson, B., Gibson, N.L., Cotilla-Sanchez, E.: A coupled Karhunen-Loève and anisotropic sparse grid interpolation method for the probabilistic load flow problem. Electr. Power Syst. Res. 193, 107044 (2021)

    Google Scholar 

  35. Kuberry, P., Larios, A., Rebholz, L.G., Wilson, N.E.: Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows. Comput. Math. Appl. 64(8), 2647–2662 (2012)

    MathSciNet  Google Scholar 

  36. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)

    Google Scholar 

  37. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows. Computational Science and Engineering. Society for Industrial and Applied Mathematics (2008)

  38. Lee, H.K., Olshanskii, M.A., Rebholz, L.G.: On error analysis for the 3d Navier-Stokes equations in velocity-vorticity-helicity form. SIAM J. Numer. Anal. 49(2), 711–732 (2011)

    MathSciNet  Google Scholar 

  39. Lee, K., Carlberg, K., Elman, H.C.: Stochastic least-squares Petrov-Galerkin method for parameterized linear systems. SIAM/ASA J. Uncertain. Quantif. 6(1), 374–396 (2018)

    MathSciNet  Google Scholar 

  40. Lee, M.W., Dowell, E.H., Balajewicz, M.J.: A study of the regularized lid-driven cavity’s progression to chaos. Commun. Nonlinear Sci. Numer. Simul. 71, 50–72 (2019)

    MathSciNet  Google Scholar 

  41. Lewis, J.M.: Roots of ensemble forecasting. Mon. Weather Rev. 133, 1865–1885 (2005)

    Google Scholar 

  42. Li, Y., Ma, Y., An, R.: Decoupled, semi-implicit scheme for a coupled system arising in magnetohydrodynamics problem. Appl. Numer. Math. 127, 142–163 (2018)

    MathSciNet  Google Scholar 

  43. Li, Y., Trenchea, C.: Partitioned second order method for magnetohydrodynamics in Elsässer variables. Discrete Contin. Dyn. Syst. B 23(7), 2803 (2018)

    MathSciNet  Google Scholar 

  44. Linke, A.: Collision in a cross-shaped domain-A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD. Comput. Methods Appl. Mech. Eng. 198(41–44), 3278–3286 (2009)

    MathSciNet  Google Scholar 

  45. Linke, A., Neilan, M., Rebholz, L.G., Wilson, N.E.: A connection between coupled and penalty projection timestepping schemes with FE spatial discretization for the Navier-Stokes equations. J. Numer. Math. 25(4), 229–248 (2017)

    MathSciNet  Google Scholar 

  46. Palmer, T.N., Leutbecher, M.: Ensemble forecasting. J. Comput. Phys. 227, 3515–3539 (2008)

    MathSciNet  Google Scholar 

  47. Maître, O.P.L., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Springer, Berlin (2010)

    Google Scholar 

  48. Martin, W.J., Xue, M.: Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles. Mon. Weather Rev. 134(1), 192–207 (2006)

    Google Scholar 

  49. Mohebujjaman, M.: High order efficient algorithm for computation of MHD flow ensembles. Adv. Appl. Math. Mech. 14(5), 1111–1137 (2022)

    MathSciNet  Google Scholar 

  50. Mohebujjaman, M., Buenrostro, C., Kamrujjaman, M., Khan, T.: Decoupled algorithms for non-linearly coupled reaction-diffusion competition model with harvesting and stocking. J. Comput. Appl. Math. 436, 115421 (2024)

    MathSciNet  Google Scholar 

  51. Mohebujjaman, M., Rebholz, L.G.: An efficient algorithm for computation of MHD flow ensembles. Comput. Methods Appl. Math. 17, 121–137 (2017)

    MathSciNet  Google Scholar 

  52. Mohebujjaman, M., Rebholz, L.G., Iliescu, T.: Physically constrained data-driven correction for reduced-order modeling of fluid flows. Int. J. Numer. Methods Fluids 89(3), 103–122 (2019)

    MathSciNet  Google Scholar 

  53. Mohebujjaman, M., Shiraiwa, S., Labombard, B., Wright, J.C., Uppalapati, K.K.: Scalability analysis of direct and iterative solvers used to model charging of superconducting pancake solenoids. Eng. Res. Express 5(1), 015045 (2023)

    Google Scholar 

  54. Mohebujjaman, M., Wang, H., Rebholz, L.G., Mahbub, M.A.A.: An efficient algorithm for parameterized magnetohydrodynamic flow ensembles simulation. Comput. Math. Appl. 112, 167–180 (2022)

    MathSciNet  Google Scholar 

  55. Neda, M., Takhirov, A., Waters, J.: Ensemble calculations for time relaxation fluid flow models. Numer. Methods Partial Differ. Equ. 32(3), 757–777 (2016)

    Google Scholar 

  56. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    MathSciNet  Google Scholar 

  57. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29, 293–322 (1980)

    MathSciNet  Google Scholar 

  58. Giraldo Osorio, J.D., Garcia Galiano, S.G.: Building hazard maps of extreme daily rainy events from PDF ensemble, via REA method, on Senegal river basin. Hydrol. Earth Syst. Sci. 15, 3605–3615 (2011)

    Google Scholar 

  59. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15(1), 142–161 (2016)

    MathSciNet  Google Scholar 

  60. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier-Stokes Equations. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  61. Simoncini, V., Gallopoulos, E.: A hybrid block GMRES method for nonsymmetric systems with multiple right-hand sides. J. Comput. Appl. Math. 66(1–2), 457–469 (1996)

    MathSciNet  Google Scholar 

  62. Stoyanov, M.: Hierarchy-direction selective approach for locally adaptive sparse grids. Technical Report ORNL/TM-2013/384, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge (2013)

  63. Stoyanov, M.: User manual: Tasmanian sparse grids. Technical Report ORNL/TM-2015/596, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge (2015)

  64. Stoyanov, M., Lebrun-Grandie, D., Burkardt, J., Munster, D.: Tasmanian (9 2013)

  65. Stoyanov, M.K., Webster, C.G.: A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions. Comput. Math. Appl. 71(11), 2449–2465 (2016)

    MathSciNet  Google Scholar 

  66. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Google Scholar 

  67. Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows. Appl. Math. Lett. 27, 97–100 (2014)

    MathSciNet  Google Scholar 

  68. Wang, C., Wang, J., Wise, S.M., Xia, Z., Xu, L.: Convergence analysis of a temporally second-order accurate finite element scheme for the Cahn-Hilliard-Magnetohydrodynamics system of equations. J. Comput. Appl. Math. 436, 115409 (2024)

    MathSciNet  Google Scholar 

  69. Wilson, N., Labovsky, A., Trenchea, C.: High accuracy method for magnetohydrodynamics system in Elsässer variables. Comput. Methods Appl. Math. 15(1), 97–110 (2015)

    MathSciNet  Google Scholar 

  70. Rebholz, L.G., Xie, X., Mohebujjaman, M., Iliescu, T.: Data-driven filtered reduced order modeling of fluid flows. SIAM J. Sci. Comput. 40(3), B834–B857 (2018)

    MathSciNet  Google Scholar 

  71. Yang, J., He, Y., Zhang, G.: On an efficient second order backward difference Newton scheme for MHD system. J. Math. Anal. Appl. 458(1), 676–714 (2018)

    MathSciNet  Google Scholar 

  72. Zhang, G.-D., Yang, J., Bi, C.: Second order unconditionally convergent and energy stable linearized scheme for MHD equations. Adv. Comput. Math. 44(2), 505–540 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Leo G. Rebholz for sharing his thoughts, and two anonymous reviewers for their comments and suggestions which greatly improved the manuscript. Alabama Supercomputer Authority (ASA) is acknowledged for generous allotment of computing time.

Funding

This work was supported by NSF grant DMS-2425308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mohebujjaman.

Ethics declarations

Conflict of interest

This work is supported by NSF grant DMS-2425308. Texas A &M International University provided the logistic support.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Muhammad Mohebujjaman was supported by the National Science Foundation (NSF) grant DMS-2425308, and Texas A &M International University. Julian Miranda was supported by the NSF grant DMS-2213274.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebujjaman, M., Miranda, J., Mahbub, M.A.A. et al. An Efficient and Accurate Penalty-projection Eddy Viscosity Algorithm for Stochastic Magnetohydrodynamic Flow Problems. J Sci Comput 101, 2 (2024). https://doi.org/10.1007/s10915-024-02633-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02633-y

Keywords

Mathematics Subject Classification