Skip to main content
Log in

Non-negative Sparse Recovery via Momentum-Boosted Adaptive Thresholding Algorithm

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Recovering a non-negative sparse signal from an underdetermined linear system remains a challenging problem in signal processing. Despite the development of various approaches, such as non-negative least squares, as well as variants of greedy algorithms and iterative thresholding methods, their recovery performance and efficiency often fall short of practical expectations. Aiming to address this limitation, this paper first devises a momentum-boosted adaptive thresholding algorithm for non-negative sparse signal recovery. Then, we establish two sufficient conditions of stable recovery for the proposed algorithm by using the restricted isometry property and mutual coherence. Extensive tests based on synthetic and real-world data demonstrate the superiority of our approach over the state-of-the-art non-negative orthogonal greedy algorithms and iterative thresholding methods, in terms of the probability of successful recovery, phase transition, and computational attractiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Berger, C.R., Zhou, S., Preisig, J.C., Willett, P.: Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. IEEE Trans. Signal Process. 58(3), 1708–1721 (2010)

    MathSciNet  Google Scholar 

  2. Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    MathSciNet  Google Scholar 

  3. Blanchard, J.D., Tanner, J.: Performance comparisons of greedy algorithms in compressed sensing. Numer. Linear Algebra Appl. 22(2), 254–282 (2015)

    MathSciNet  Google Scholar 

  4. Blanchard, J.D., Tanner, J., Wei, K.: Conjugate gradient iterative hard thresholding: observed noise stability for compressed sensing. IEEE Trans. Signal Process. 63(2), 528–537 (2015)

    MathSciNet  Google Scholar 

  5. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    MathSciNet  Google Scholar 

  6. Blumensath, Thomas, Davies, Mike E.: Normalized iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Signal Process. 4(2), 298–309 (2010)

    Google Scholar 

  7. Boufounos, P.T., Baraniuk, R.G.: 1-bit compressive sensing. In: Proc. 42nd Annu. Conf. Inf. Sci. Syst., pp. 16–21 (Mar. 2008)

  8. Bruckstein, A.M., Elad, M., Zibulevsky, M.: On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Trans. Inf. Theory 54(11), 4813–4820 (2008)

    MathSciNet  Google Scholar 

  9. Cai, X., Chan, R., Nikolova, M., Zeng, T.: A three-stage approach for segmenting degraded color images: smoothing, lifting and thresholding (SLaT). J. Sci. Comput. 72, 1313–1332 (2017)

    MathSciNet  Google Scholar 

  10. Candès, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    MathSciNet  Google Scholar 

  11. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)

    Google Scholar 

  12. Chen, X., Liu, J., Wang, Z., Yin, W.: Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds. In: Advances in Neural Inf. Process. Syst., vol. 31 (2018)

  13. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

  14. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  15. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    MathSciNet  Google Scholar 

  16. Donoho, D.L., Maleki, A., Montanari, A.: Message-passing algorithms for compressed sensing. Proc. Nat. Acad. Sci. 106(45), 18914–18919 (2009)

    Google Scholar 

  17. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011)

    MathSciNet  Google Scholar 

  18. Foucart, S., Koslicki, D.: Sparse recovery by means of nonnegative least squares. IEEE Signal Process. Lett. 21(4), 498–502 (2014)

    Google Scholar 

  19. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel (2013)

    Google Scholar 

  20. Ge, H., Chen, W., Ng, M.K.: New restricted isometry property analysis for \(\ell _1-\ell _2\) minimization methods. SIAM J. Imaging Sci. 14(2), 530–557 (2021)

    MathSciNet  Google Scholar 

  21. Geng, T., Sun, G., Xu, Y., He, J.: Truncated nuclear norm minimization based group sparse representation for image restoration. SIAM J. Imaging Sci. 11(3), 1878–1897 (2018)

    MathSciNet  Google Scholar 

  22. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Google Scholar 

  23. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image Vis. Comput. 28(5), 807–813 (2010)

    Google Scholar 

  24. Han, H., Wang, G., Wang, M., Miao, J., Guo, S., Chen, L., Zhang, M., Guo, K.: Hyperspectral unmixing via nonconvex sparse and low-rank constraint. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 5704–5718 (2020)

  25. He, R., Zheng, W.S., Hu, B.G., Kong, X.W.: Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Trans. Neural Netw. Learn. Syst. 24(1), 35–46 (2013)

    Google Scholar 

  26. He, R., Zheng, W.S., Hu, B.G., Kong, X.W.: Nonnegative sparse coding for discriminative semi-supervised learning. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2849–2856 (2011)

  27. He, Z., Shu, Q., Wang, Y., Wen, J.: A ReLU-based hard-thresholding algorithm for non-negative sparse signal recovery. Signal Process. 215, 109260 (2024)

    Google Scholar 

  28. Herman, M.A., Strohmer, T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)

    MathSciNet  Google Scholar 

  29. Huo, L., Chen, W., Ge, H., Ng, M.K.: \(L_1-\beta L_q\) minimization for signal and image recovery. SIAM J. Imaging Sci. 16(4), 1886–1928 (2023)

    MathSciNet  Google Scholar 

  30. Iordache, M.D., Bioucas-Dias, J.M., Plaza, A.: Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49(6), 2014–2039 (2011)

    Google Scholar 

  31. Ji, Y., Lin, T., Zha, H.: Mahalanobis distance based non-negative sparse representation for face recognition. In: Proc. Int. Conf. Mach. Learn. Appl., pp. 41–46 (2009)

  32. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, New Delhi (1995)

    Google Scholar 

  33. Li, S., Xu, L.D., Wang, X.: Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Trans. Industr. Inform. 9(4), 2177–2186 (2013)

    Google Scholar 

  34. Liu, J., Zhang, J.: Spectral unmixing via compressive sensing. IEEE Trans. Geosci. Remote Sens. 52(11), 7099–7110 (2014)

    Google Scholar 

  35. Liu, Y., Wu, F., Zhang, Z., Zhuang, Y., Yan, S.: Sparse representation using nonnegative curds and whey. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3578–3585 (2010)

  36. Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: Proc. 3rd IEEE Int. Conf. Autom. Face Gesture Recognit., pp. 200–205 (1998)

  37. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proc. Int. Conf. Mach. Learn., pp. 807–814 (2010)

  38. Nakarmi, U., Rahnavard, N.: BCS: Compressive sensing for binary sparse signals. In: Proc. IEEE Military Commun. Conf., pp. 1–5 (2012)

  39. Needell, D., Tropp, J.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    MathSciNet  Google Scholar 

  40. Nguyen, T.T., Idier, J., Soussen, C., Djermoune, E.H.: Non-negative orthogonal greedy algorithms. IEEE Trans. Signal Process. 67(21), 5643–5658 (2019)

    Google Scholar 

  41. Nguyen, T.T., Soussen, C., Idier, J., Djermoune, E.H.: K-step analysis of orthogonal greedy algorithms for non-negative sparse representations. Signal Process. 188, 108185 (2021)

    Google Scholar 

  42. Pan, L., Chen, X.: Group sparse optimization for images recovery using capped folded concave functions. SIAM J. Imaging Sci. 14(1), 1–25 (2021)

    MathSciNet  Google Scholar 

  43. Pan, L., Zhou, S., Xiu, N., Qi, H.D.: A convergent iterative hard thresholding for nonnegative sparsity optimization. Pac. J. Optim. 13(2), 325–353 (2017)

    MathSciNet  Google Scholar 

  44. Parvaresh, F., Vikalo, H., Misra, S., Hassibi, B.: Recovering sparse signals using sparse measurement matrices in compressed DNA microarrays. IEEE J. Sel. Top. Signal Process. 2(3), 275–285 (2008)

    Google Scholar 

  45. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc, New York (1987)

    Google Scholar 

  46. Slawski, M., Hein, M.: Sparse recovery by thresholded non-negative least squares. In: Adv. Neural Inf. Process. Syst., vol. 24 (2011)

  47. Sun, Z.F., Zhou, J.C., Zhao, Y.B., Meng, N.: Heavy-ball-based hard thresholding algorithms for sparse signal recovery. J. Comput. Appl. Math. 430, 115264 (2023)

    MathSciNet  Google Scholar 

  48. The Olivetti & Oracle Research Laboratory: the ORL database of faces. https://cam-orl.co.uk/facedatabase.html (1994)

  49. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    MathSciNet  Google Scholar 

  50. Vardi, Y.: Network tomography: estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91(433), 365–377 (1996)

    MathSciNet  Google Scholar 

  51. Vo, N.Q., Moran, W., Challa, S.: Nonnegative-least-square classifier for face recognition. In: Proc. Int. Symp. Neural Netw., Adv. Neural Netw., pp. 449–456 (2009)

  52. Wang, Y., He, Z., Zhang, G., Wen, J.: Improved sufficient conditions based on RIC of order 2s for IHT and HTP algorithms. IEEE Signal Process. Lett. 30, 668–672 (2023)

    Google Scholar 

  53. Wang, Y., Zeng, J., Peng, Z., Chang, X., Xu, Z.: Linear convergence of adaptively iterative thresholding algorithms for compressed sensing. IEEE Trans. Signal Process. 63(11), 2957–2971 (2015)

    MathSciNet  Google Scholar 

  54. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  55. Wen, J., Li, H.: Binary sparse signal recovery with binary matching pursuit. Inverse Probl. 37(6), 065014 (2021)

    MathSciNet  Google Scholar 

  56. Wen, J., Zhang, R., Yu, W.: Signal-dependent performance analysis of orthogonal matching pursuit for exact sparse recovery. IEEE Trans. Signal Process. 68, 5031–5046 (2020)

    MathSciNet  Google Scholar 

  57. Wen, J., Zhou, Z., Wang, J., Tang, X., Mo, Q.: A sharp condition for exact support recovery with orthogonal matching pursuit. IEEE Trans. Signal Process. 65(6), 1370–1382 (2016)

    MathSciNet  Google Scholar 

  58. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Google Scholar 

  59. Wu, T., Shao, J., Gu, X., Ng, M.K., Zeng, T.: Two-stage image segmentation based on nonconvex \(\ell _{2}-\ell _{p}\) approximation and thresholding. Appl. Math. Comput. 403, 126168 (2021)

    MathSciNet  Google Scholar 

  60. Xu, J., An, W., Zhang, L., Zhang, D.: Sparse, collaborative, or nonnegative representation: Which helps pattern classification? Pattern Recognit. 88, 679–688 (2019)

    Google Scholar 

  61. Yaghoobi, M., Wu, D., Davies, M.E.: Fast non-negative orthogonal matching pursuit. IEEE Signal Process. Lett. 22(9), 1229–1233 (2015)

    Google Scholar 

  62. Yang, A.Y., Maji, S., Hong, K., Yan, P., Sastry, S.S.: Distributed compression and fusion of nonnegative sparse signals for multiple-view object recognition. In: Proc. Int. Conf. Inf. Fusion, pp. 1867–1874 (2009)

  63. Zhang, S., Wang, J., Shi, W., Gong, Y., Xia, Y., Zhang, Y.: Normalized non-negative sparse encoder for fast image representation. IEEE Trans. Circuits Syst. Video Technol. 29(7), 1962–1972 (2019)

    Google Scholar 

  64. Zhao, Y.B.: Optimal \(k\)-thresholding algorithms for sparse optimization problems. SIAM J. Optim. 30(1), 31–55 (2020)

    MathSciNet  Google Scholar 

  65. Zhao, Y.B., Luo, Z.Q.: Improved RIP-based bounds for guaranteed performance of two compressed sensing algorithms. Sci. China Math. 66(5), 1123–1140 (2023)

    MathSciNet  Google Scholar 

  66. Zhuang, L., Gao, H., Lin, Z., Ma, Y., Zhang, X., Yu, N.: Non-negative low rank and sparse graph for semi-supervised learning. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2328–2335 (2012)

  67. Zymnis, A., Boyd, S., Candes, E.: Compressed sensing with quantized measurements. IEEE Signal Process. Lett. 17(2), 149–152 (2010)

    Google Scholar 

Download references

Funding

This work was partially supported by NSFC (12271215, 12326378, 11871248, and 12326377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Lemma 4

This lemma can be proved using a similar methodology employed in [53, Lemma 3], we provide its proof here for the convenience of readers. Since \(\left\Vert {u}\right\Vert _{p} \le \left\Vert {u}\right\Vert _{q}\) holds for any vector \({u}\) and \(1\le q \le p\le \infty \), then, to prove (17), we only need to show that

$$\begin{aligned} \left|u_{[K+1]}^{[n]}\right|\le \left\Vert \left( {u}^{[n]}-{\varvec{x}}\right) _{\varOmega }\right\Vert _{\infty }, \end{aligned}$$

where \(\varOmega \) is the set of indices of the \(K+1\) largest-magnitude entries in \({u}\). Since \(|{\text {supp}}\{{\varvec{x}}\}|\le K<|\varOmega |=K+1\), there exists certain index j such that \(j\in \varOmega \) and \(j\notin {\text {supp}}\{{\varvec{x}}\}\), then we have

$$\begin{aligned} \left|u_{[K+1]}^{[n]}\right|\le \left|u_{j}^{[n]}\right|=\left|u_{j}^{[n]}-x_{j}\right|\le \left\Vert \left( {u}^{[n]}-{\varvec{x}}\right) _{\varOmega }\right\Vert _{\infty }. \end{aligned}$$

Proof of Lemma 5

Proof

According to the Cauchy–Schwarz inequality and \(\left\Vert \varvec{A}_{i}\right\Vert _{2}=1\), one can easily show that

$$\begin{aligned} \left\Vert \left( \varvec{A}^{T}\varvec{v}\right) _{\varGamma }\right\Vert _{\infty }=\max _{i\in \{1,\ldots ,M\}}\left|\varvec{A}_{i}^{T}\varvec{v}\right|\le \Vert \varvec{v}\Vert _{2}. \end{aligned}$$

Denote \(\varvec{Q}=\varvec{I}-\rho \varvec{A}^{T}\varvec{A}\) and \(\mathcal {S} ={\text {supp}}\{{\varvec{x}}\}\). Combining (13) and \(\left\Vert \varvec{A}_{i}\right\Vert _{2}=1\) we have \(\left|\varvec{A}_{i}^T\varvec{A}_{j}\right|\le \mu ,~i\ne j\), leading to \(\left|Q_{ij}\right|\le \max \left\{ |1-\rho |,\mu \rho \right\} \) and

$$\begin{aligned} \left\Vert \left[ \left( \varvec{I}-\rho \varvec{A}^{T}\varvec{A}\right) {\varvec{x}}\right] \right\Vert _{\infty }=\max _{i\in \{1,\ldots ,M\}}\sum \limits _{j\in \mathcal {S}} \left|Q_{ij}x_{j}\right|&\le \max \left\{ |1-\rho |,\mu \rho \right\} \sum \limits _{j\in \mathcal {S}} \left|x_{j}\right|\nonumber \\&=\max \left\{ |1-\rho |,\mu \rho \right\} \Vert {\varvec{x}}\Vert _{1}. \end{aligned}$$
(39)

\(\square \)

Proof of Lemma 6

Proof

Based on (3), (22), and (23), we can rewrite \(\varvec{z}^{[n]}\) in (12) as

$$\begin{aligned} \varvec{z}^{[n]}={\varvec{x}}+\varvec{w}+\varvec{q}. \end{aligned}$$
(40)

Furthermore, by (9) and line 2 of Algorithm 1, we have \(\varvec{z}^{[n]}={u}^{[n]}+\bar{{u}}^{[n]}\), where

$$\begin{aligned} u_{i}^{[n]}= {\left\{ \begin{array}{ll} z_{i}^{[n]}, & z_{i}^{[n]}> 0\\ 0, & z_{i}^{[n]} \le 0 \end{array}\right. },~~ \bar{u}_{i}^{[n]}= {\left\{ \begin{array}{ll} 0, & z_{i}^{[n]} > 0\\ z_{i}^{[n]}, & z_{i}^{[n]} \le 0 \end{array}\right. },~~ i\in \{1,2,...,N\}. \end{aligned}$$
(41)

Thus, for any \(i\in \{1,\ldots ,N\}\):

  1. a)

    If \(z_i^{[n]}>0\), it holds that

    $$\begin{aligned} u_i^{[n]}=z_i^{[n]}=x_i+w_i+q_i, \end{aligned}$$

    which implies \(u_i^{[n]}-x_i=w_i+q_i\) and hence \(\left|u_i^{[n]}-x_i\right|=\left|w_i+q_i\right|\).

  2. b)

    If \(z_i^{[n]}\le 0\), we have \(u_i^{[n]}=0\) and \(x_i\le -(w_i+q_i)\). Since \(x_i\ge 0\), we have \(\left|u_i^{[n]}-x_i\right|=|x_i|\le |w_i+q_i|\).

This implies \(\left|u^{[n]}_{i}-x_{i}\right|\le |w_{i}+q_{i}|\) for any \(i\in \{1,\ldots ,N\}\), and combining with (17) yield

$$\begin{aligned} \left|u_{[K+1]}^{[n]}\right|\le & \left\Vert ({u}^{[n]}-{\varvec{x}})_{\varOmega }\right\Vert _{\infty } \nonumber \\\le & \left\Vert \varvec{w}+\varvec{q}\right\Vert _{\infty } \nonumber \\\overset{(a)}{\le } & \left\Vert {\varvec{x}}^{[n]}-{\varvec{x}}+ \alpha \varvec{A}^T({\varvec{y}}-\varvec{A}{\varvec{x}}^{[n]}) + \beta ({\varvec{x}}^{[n]}-{\varvec{x}}^{[n-1]})\right\Vert _{\infty } \nonumber \\= & \left\Vert (1+\beta )\left( \varvec{I}-\frac{\alpha }{1+\beta }\varvec{A}^T\varvec{A}\right) ({\varvec{x}}^{[n]}-{\varvec{x}})- \beta \left( {\varvec{x}}^{[n-1]}-{\varvec{x}}\right) + \alpha \varvec{A}^{T}\varvec{v}\right\Vert _{\infty } \nonumber \\\le & (1+\beta ) \left\Vert \left( \varvec{I}-\frac{\alpha }{1+\beta }\varvec{A}^T\varvec{A}\right) \left( {\varvec{x}}^{[n]}-{\varvec{x}}\right) \right\Vert _{\infty } + \beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _{1} + \alpha \left\Vert \varvec{A}^{T}\varvec{v}\right\Vert _{\infty } \nonumber \\\le & \gamma \left\Vert {\varvec{x}}^{[n]}-{\varvec{x}}\right\Vert _{1} + \beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _{1} + \alpha \Vert \varvec{v}\Vert _2, \end{aligned}$$
(42)

where (a) follows from (12) and (40), and the last inequality is due to (18), (19), and (24). Hence (21) holds. \(\square \)

Proof of Lemma 7

Proof

To simplify notation, we denote

$$\begin{aligned} \varLambda ^{[n]}:= \mathcal {S}^{p^{[n]}}\left( {u}^{[n]}\right) , \end{aligned}$$
(43)

where \(\mathcal {S}^{p^{[n]}}(\cdot )\) has been defined in (6).

According to the definitions of \(\mathcal {S}^{[n+1]}\) and \(\mathcal {S}\), the left-hand side of (25) is rewritten as:

$$\begin{aligned}&\left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}^2 = \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2 + \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{2}^2, \end{aligned}$$
(44)
$$\begin{aligned}&\left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}^2 = \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}}-{\varvec{x}}_{\mathcal {S}^{[n+1]}}\right\Vert _{2}^2 + \left\Vert {\varvec{x}}_{\mathcal {S}\setminus \mathcal {S}^{[n+1]}}\right\Vert _{2}^2. \end{aligned}$$
(45)

Each term of the right-hand side of (44) can be analyzed as follows:

  1. a)

    According to (10), (27), (41), and line 4 of Algorithm 1, for any \(i \in \mathcal {S}^{[n+1]}\), it holds that

    $$\begin{aligned} {\text {sign}}\left( x^{[n+1]}_{i}\right) = {\text {sign}}\left( u_{i}^{[n]}\right) ,~\left|x^{[n+1]}_{i}\right|\le \left|u_{i}^{[n]}\right|. \end{aligned}$$

    Then, we have

    $$\begin{aligned} \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}\right\Vert _{2}^2&= \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}+{u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2 \nonumber \\&\ge \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2 + \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2, \end{aligned}$$

    resulting in

    $$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2 \le \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}\right\Vert _{2}^2 - \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2. \end{aligned}$$
    (46)
  2. b)

    For \(\left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{2}^2\), we have

    $$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{2}^2&= \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}}-{u}_{\mathcal {S}}^{[n]}+{u}_{\mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{2}^2 \nonumber \\&\le 2\left( \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}}-{u}_{\mathcal {S}}^{[n]}\right\Vert _{2}^2 + \left\Vert {u}_{\mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{2}^2\right) , \end{aligned}$$
    (47)

    where the inequality is due to \((a+b)^2\le 2a^2+2b^2\) for any \(a,b\in \mathbb {R}\). According to lines 3 and 4 of Algorithm 1, (10), and (27), it holds that

    $$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}}-{u}_{\mathcal {S}}^{[n]}\right\Vert _{2}^2 \le |\mathcal {S}| \max \limits _{i\in \mathcal {S}}\left|x^{[n+1]}_i-u_i^{[n]}\right|^2 \le K \left|u_{[K+1]}^{[n]}\right|^2. \end{aligned}$$
    (48)

    Substituting (48) into (47) yields

    $$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{2}^2 \le 2K \left|u_{[K+1]}^{[n]}\right|^2+2\left\Vert {u}_{\mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{2}^2. \end{aligned}$$
    (49)

Then, substituting (46) and (49) into (44) results in

$$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}^2 \le&\left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}\right\Vert _{2}^2 + 2\left\Vert {u}_{\mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{2}^2 \nonumber \\&- \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2 + 2K \left|u_{[K+1]}^{[n]}\right|^2 \nonumber \\ =&2\left\Vert {u}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\right\Vert _{2}^2 - \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}\right\Vert _{2}^2 \nonumber \\&- \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2 + 2K \left|u_{[K+1]}^{[n]}\right|^2 , \end{aligned}$$
(50)

where the equality is due to \(\mathcal {S}^{[n+1]}\cup \mathcal {S}= \left( \mathcal {S}^{[n+1]}{\setminus }\mathcal {S}\right) \cup \mathcal {S}\).

According to lines 3 and 4 of Algorithm 1, (10), (27), and (43), it holds that

$$\begin{aligned}&\left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}\right\Vert _{2}^2 \ge \left|\mathcal {S}^{[n+1]}\setminus \mathcal {S}\right|\left|u_{[K+1]}^{[n]}\right|^2, \end{aligned}$$
(51)
$$\begin{aligned}&\left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2 = \left|\mathcal {S}^{[n+1]}\setminus \left( \mathcal {S}\cup \varLambda ^{[n]}\right) \right|\left|u_{[K+1]}^{[n]}\right|^2. \end{aligned}$$
(52)

Then, substituting (51) and (52) into (50) results in

$$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}^2 \le&2\left\Vert {u}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\right\Vert _{2}^2 \nonumber \\&+ \left( 2K-\left|\mathcal {S}^{[n+1]}\setminus \mathcal {S}\right|- \left|\mathcal {S}^{[n+1]}\setminus \left( \mathcal {S}\cup \varLambda ^{[n]}\right) \right|\right) \left|u_{[K+1]}^{[n]}\right|^2 \nonumber \\ \le&\left( 2K+2-\left|\mathcal {S}^{[n+1]}\setminus \mathcal {S}\right|\right. \nonumber \\&\left. -\left|\mathcal {S}^{[n+1]}\setminus \left( \mathcal {S}\cup \varLambda ^{[n]}\right) \right|\right) \left\Vert ({u}^{[n]}-{\varvec{x}})_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2, \end{aligned}$$
(53)

where the last inequality is due to (17), (27), and \(\mathcal {S}^{[n+1]}={\text {supp}}\left\{ {\varvec{x}}^{[n+1]}\right\} \) is also the set of indices of the K largest-magnitude entries in \({u}^{[n]}\).

For the right-hand side of (45), we carry out the following derivation:

$$\begin{aligned} & \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}^2 \nonumber \\ & \quad = \left\Vert {\varvec{x}}_{\mathcal {S}^{[n+1]}}^{[n+1]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}}\right\Vert _{2}^2 + \left\Vert {\varvec{x}}_{\mathcal {S}\setminus \mathcal {S}^{[n+1]}}\right\Vert _{2}^2 \nonumber \\ & \quad \le 2\left\Vert {u}_{\mathcal {S}^{[n+1]}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}}\right\Vert _{2}^2+2\left\Vert {u}_{\mathcal {S}^{[n+1]}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}}\right\Vert _{2}^2 \nonumber \\ & \qquad + 2\left\Vert {u}_{\mathcal {S}\setminus \mathcal {S}^{[n+1]}}^{[n]}-{\varvec{x}}_{\mathcal {S}\setminus \mathcal {S}^{[n+1]}}\right\Vert _{2}^2 + 2\left\Vert {u}_{\mathcal {S}\setminus \mathcal {S}^{[n+1]}}^{[n]}\right\Vert _{2}^2 \nonumber \\ & \quad = 2 \left( \left\Vert {u}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\right\Vert _{2}^2 + \left\Vert {u}_{\mathcal {S}^{[n+1]}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}}\right\Vert _{2}^2 + \left\Vert {u}_{\mathcal {S}\setminus \mathcal {S}^{[n+1]}}^{[n]}\right\Vert _{2}^2\right) , \end{aligned}$$
(54)

where the inequality is due to \((a+b)^2\le 2a^2+2b^2\) for any \(a,b\in \mathbb {R}\), and the last equality follows from \(\mathcal {S}^{[n+1]}\cup \mathcal {S}=\mathcal {S}^{[n+1]}\cup \left( \mathcal {S}\setminus \mathcal {S}^{[n+1]}\right) \).

According to lines 3 and 4 of Algorithm 1, (27), and (43), it holds that

$$\begin{aligned}&\left\Vert {u}_{\mathcal {S}^{[n+1]}}^{[n]}-{\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}}\right\Vert _{2}^2 = \left( \left|\mathcal {S}^{[n+1]}\right|-\left|\varLambda ^{[n]}\right|\right) \left|u_{[K+1]}^{[n]}\right|^2 =\left( K-\left|\varLambda ^{[n]}\right|\right) \left|u_{[K+1]}^{[n]}\right|^2, \\&\left\Vert {u}_{\mathcal {S}\setminus \mathcal {S}^{[n+1]}}^{[n]}\right\Vert _{2}^2 \le \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}\right\Vert _{2}^2 =\left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2. \end{aligned}$$

Substituting them into (54) yields

$$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}^2 \le&2\left( \left\Vert {u}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\right\Vert _{2}^2 + \left( K-\left|\varLambda ^{[n]}\right|\right) \left|u_{[K+1]}^{[n]}\right|^2 \right. \nonumber \\&+ \left. \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2\right) \nonumber \\ \overset{(a)}{\le }\ &2\Bigg ( \left\Vert {u}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\right\Vert _{2}^2+\left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{2}^2 \nonumber \\&+ \left( K-\left|\varLambda ^{[n]}\right|\right) \left\Vert \left( {u}^{[n]}-{\varvec{x}}\right) _{\mathcal {S}^{[n+1]}\cup {\text {supp}}\left\{ {u}^{[n]}_{[K+1]}\right\} }\right\Vert _{2}^2 \Bigg ) \nonumber \\ \le&\left[ 2K+4-2\left|\varLambda ^{[n]}\right|\right] \left\Vert {u}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2, \end{aligned}$$
(55)

where (a) is due to (17) and \(\mathcal {S}^{[n+1]}={\text {supp}}\left\{ {\varvec{x}}^{[n+1]}\right\} \) is also the set of indices of the K largest-magnitude entries in \({u}^{[n]}\), and the last inequality follows from (27).

By combining (53) and (55), we have

$$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}^2&\le \nu ^{[n]}\left\Vert {u}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2 \nonumber \\&\le \nu ^{*}\left\Vert {u}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2, \end{aligned}$$
(56)

where \(\nu ^{[n]}\) and \(\nu ^{*}\) have been defined in (26). Then, we prove (25) by taking the square root on both sides of (56). \(\square \)

Proof of Theorem 1

Proof

According to (27), it holds that

$$\begin{aligned} \left\Vert {u}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2 = \left\Vert {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}_{+}^{[n]}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2 + \left\Vert {u}_{ \mathcal {S}_{+}^{[n]}}^{[n]}-{\varvec{x}}_{ \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2. \end{aligned}$$
(57)

Now we consider two cases (i.e., \(z_{i}^{[n]} > 0\) and \(z_{i}^{[n]} \le 0\)) for the right-hand side of (57) based on (41):

  1. a)

    For any \(i\in \{1,\ldots ,N\}\), if \(z_{i}^{[n]} > 0\), we have \(u_{i}^{[n]}=z_{i}^{[n]}\) and \(\bar{u}_{i}^{[n]}=0\), yielding

    $$\begin{aligned} \left|u_{i}^{[n]}-x_{i}\right|^2=\left|z_{i}^{[n]}-x_{i}\right|^2 \overset{(40)}{=}|w_{i}+q_{i}|^2 =|w_{i}+q_{i}|^2-\left|\bar{u}_{i}^{[n]}\right|^2. \end{aligned}$$
    (58)
  2. b)

    For any \(i\in \mathcal {S}^{[n+1]}{\setminus } \mathcal {S}_{+}^{[n]}\), if \(z_{i}^{[n]} \le 0\), we have \(u_{i}^{[n]}=0\) and \(\bar{u}_{i}^{[n]}=z_{i}^{[n]}\), resulting in

    $$\begin{aligned} \left|u_{i}^{[n]}-x_{i}\right|^2\overset{(a)}{=} & 0 \nonumber \\= & |w_{i}+q_{i}|^2-|w_{i}+q_{i}|^2 \nonumber \\\overset{(40)}{=} & |w_{i}+q_{i}|^2-\left|z_{i}^{[n]}-x_{i}\right|^2 \nonumber \\= & |w_{i}+q_{i}|^2-\left|z_{i}^{[n]}\right|^2 \nonumber \\= & |w_{i}+q_{i}|^2-\left|\bar{u}_{i}^{[n]}\right|^2, \end{aligned}$$
    (59)

    where (a) is due to \(u_{i}^{[n]}=0\) and \(x_{i}=0\).

    Furthermore, by (27), we have \(\mathcal {S}_{+}^{[n]}=\left( {\text {supp}}\left\{ {u}^{[n]}_{[K+1]}\right\} {\setminus } \mathcal {S}\right) \cup \mathcal {S}\).

    Then, for \(i\in {\text {supp}}\left\{ {u}^{[n]}_{[K+1]}\right\} {\setminus } \mathcal {S}\), if \(z_{i}^{[n]} \le 0\), it holds that \(u_{i}^{[n]}=0\), \(\bar{u}_{i}^{[n]}=z_{i}^{[n]}\), and \(x_{i}=0\). By using the same derivation as in (59), we attain

    $$\begin{aligned} \left|u_{i}^{[n]}-x_{i}\right|^2=|w_{i}+q_{i}|^2-\left|\bar{u}_{i}^{[n]}\right|^2. \end{aligned}$$
    (60)

    For \(i\in \mathcal {S}\), if \(z_{i}^{[n]} \le 0\), we have

    $$\begin{aligned} \left|u_{i}^{[n]}-x_{i}\right|^2=\left|x_{i}\right|^2\overset{(a)}{\le } & |w_{i}+q_{i}|^2-|w_{i}+x_{i}+q_{i}|^2 \nonumber \\\overset{(40)}{=} & |w_{i}+q_{i}|^2-\left|z_{i}^{[n]}\right|^2 \nonumber \\= & |w_{i}+q_{i}|^2-\left|\bar{u}_{i}^{[n]}\right|^2, \end{aligned}$$
    (61)

    where (a) comes from:

    $$\begin{aligned} |w_{i}+q_{i}|^2&=|(w_{i}+q_{i}+x_{i})-x_{i}|^2\\&=|w_{i}+q_{i}+x_{i}|^2+|x_{i}|^2-2(w_{i}+q_{i}+x_{i})x_{i}\\&\ge |w_{i}+q_{i}+x_{i}|^2+|x_{i}|^2, \end{aligned}$$

    and the last inequality follows from \(x_{i}>0\) and \(z_{i}^{[n]}\overset{(40)}{=}w_{i}+q_{i}+x_{i} \le 0\) for \(i \in \mathcal {S}\).

Substituting (58), (59), (60), and (61) into (57) results in

$$\begin{aligned} \left\Vert {u}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}^{[n]}-{\varvec{x}}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2 \le&\left\Vert (\varvec{w}+\varvec{q})_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2-\left\Vert \bar{{u}}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}_{+}^{[n]}}^{[n]}\right\Vert _{2}^2 \nonumber \\&+ \left\Vert (\varvec{w}+\varvec{q})_{\mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2-\left\Vert \bar{{u}}_{\mathcal {S}_{+}^{[n]}}^{[n]}\right\Vert _{2}^2. \end{aligned}$$
(62)

Then, by combining (25) and (62), we have

$$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}^2 \le \nu ^{*} \left\Vert (\varvec{w}+\varvec{q})_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}^2, \end{aligned}$$
(63)

where \(\nu ^{*}\) is defined in (26).

Taking the square root on both sides of (63), we attain

$$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{2}\le & \sqrt{\nu ^{*}}\left\Vert (\varvec{w}+\varvec{q})_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2} \nonumber \\\le & \sqrt{\nu ^{*}}\left( \left\Vert \varvec{w}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}+\left\Vert \varvec{q}_{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2}\right) \nonumber \\\overset{(a)}{\le } & \sqrt{\nu ^{*}}\left( (1-\alpha + \beta )\left\Vert \left( {\varvec{x}}^{[n] }-{\varvec{x}}\right) _{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}} \right\Vert _{2} \right. \nonumber \\ & \left. + \alpha \left\Vert \left[ \left( \varvec{I}-\varvec{A}^T\varvec{A}\right) \left( {\varvec{x}}^{[n]}-{\varvec{x}}\right) \right] _{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}} \right\Vert _{2} \right. \nonumber \\ & \left. + \beta \left\Vert \left( {\varvec{x}}^{[n-1]}-{\varvec{x}}\right) _{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}} \right\Vert _{2} + \alpha \left\Vert \left( \varvec{A}^T\varvec{v}\right) _{\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}}\right\Vert _{2} \right) \nonumber \\\overset{(b)}{\le } & \sqrt{\nu ^{*}}\left[ \left( |1-\alpha + \beta | + \alpha \delta _{3K+1}\right) \left\Vert {\varvec{x}}^{[n]}-{\varvec{x}}\right\Vert _{2}+\beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _{2}\right. \nonumber \\ & + \left. \alpha \sqrt{1+\delta _{2K+1}}\Vert \varvec{v}\Vert _{2} \right] \nonumber \\\overset{(31)}{=} & \phi \left\Vert {\varvec{x}}^{[n]}-{\varvec{x}}\right\Vert _{2}+\sqrt{\nu ^{*}}\beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _{2}+ \alpha \sqrt{\nu ^{*}\left( 1+\delta _{2K+1}\right) }\Vert \varvec{v}\Vert _{2},\nonumber \\ \end{aligned}$$
(64)

where (a) follows from (22) and (23), and (b) is due to (14), (15), (27), and

$$\begin{aligned} \left|\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}\cup {\text {supp}}\left\{ {\varvec{x}}^{[n]}-{\varvec{x}}\right\} \right|\le 3K+1,~\left|\mathcal {S}^{[n+1]} \cup \mathcal {S}_{+}^{[n]}\right|\le 2K+1. \end{aligned}$$

When \(\delta \) fulfills (28), the range of \(\beta \) in (29) is well-defined. Furthermore, it can be verified that:

$$\begin{aligned} \frac{\sqrt{\nu ^{*}}(1+2\beta )-1}{\sqrt{\nu ^{*}}(1-\delta _{3K+1})}<1+\beta <\frac{\sqrt{\nu ^{*}}+1}{\sqrt{\nu ^{*}}(\delta _{3K+1}+1)}. \end{aligned}$$

By the above inequality, we have \(\frac{\sqrt{\nu ^{*}}(1+2\beta )-1}{\sqrt{\nu ^{*}}(1-\delta _{3K+1})}< \frac{\sqrt{\nu ^{*}}+1}{\sqrt{\nu ^{*}}(\delta _{3K+1}+1)}\), implying that the range of \(\alpha \) in (29) is also well-defined. Therefore, for any fixed \(\delta \) and \(\beta \), there exists certain \(\alpha \) such that either \(\frac{\sqrt{\nu ^{*}}(1+2\beta )-1}{\sqrt{\nu ^{*}}(1-\delta _{3K+1})}<\alpha \le 1+\beta \) or \(1+\beta<\alpha <\frac{\sqrt{\nu ^{*}}+1}{\sqrt{\nu ^{*}}(\delta _{3K+1}+1)}\). Then, we carry out the following derivation:

  1. a)

    For \(\frac{\sqrt{\nu ^{*}}(1+2\beta )-1}{\sqrt{\nu ^{*}}(1-\delta _{3K+1})}<\alpha \le 1+\beta \), it holds that

    $$\begin{aligned}&\sqrt{\nu ^{*}}(|1-\alpha + \beta | + \alpha \delta _{3K+1})\nonumber \\&\quad =\sqrt{\nu ^{*}}(1 + \beta - \alpha (1-\delta _{3K+1})) \nonumber \\&\quad =\sqrt{\nu ^{*}}\left( 1 + \beta - \frac{\sqrt{\nu ^{*}}(1+2\beta )-1}{\sqrt{\nu ^{*}}(1-\delta _{3K+1})}(1-\delta _{3K+1})\right) \nonumber \\&\quad =1-\sqrt{\nu ^{*}}\beta . \end{aligned}$$
  2. b)

    For \(1+\beta<\alpha <\frac{\sqrt{\nu ^{*}}+1}{\sqrt{\nu ^{*}}(\delta _{3K+1}+1)}\), it holds that

    $$\begin{aligned}&\sqrt{\nu ^{*}}(|1-\alpha + \beta | + \alpha \delta _{3K+1})\nonumber \\&\quad =\sqrt{\nu ^{*}}(-1 - \beta + \alpha (1+\delta _{3K+1})) \nonumber \\&\quad =\sqrt{\nu ^{*}}\left( -1 - \beta + \frac{\sqrt{\nu ^{*}}+1}{\sqrt{\nu ^{*}}(\delta _{3K+1}+1)}(1+\delta _{3K+1})\right) \nonumber \\&\quad =1-\sqrt{\nu ^{*}}\beta . \end{aligned}$$

Hence, we have \(\sqrt{\nu ^{*}}(|1-\alpha + \beta | + \alpha \delta _{3K+1}+\beta )<1\), combining this with (64) and Lemma 3 give (30) and (32). \(\square \)

Proof of Theorem 2

Proof

We first define \(\varvec{h}\in \mathbb {R}^{N}\) as:

$$\begin{aligned} h_i:= \left\{ \begin{aligned}&1, & i \in \mathcal {S}^{[n+1]}\setminus \varLambda ^{[n]}\\&0, & \text {otherwise} \end{aligned}, \right. \end{aligned}$$
(65)

where \(\mathcal {S}^{[n+1]}\) and \(\varLambda ^{[n]}\) are defined in (27) and (43), respectively.

According to the definition of \(\mathcal {S}^{[n+1]}\) and \(\mathcal {S}\), we rewrite \(\left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{1}\) as

$$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{1}= \left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}- {\varvec{x}}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\Vert _{1}+\left\Vert {\varvec{x}}^{[n+1]}_{\mathcal {S}}-{\varvec{x}}_{\mathcal {S}}\right\Vert _{1}. \end{aligned}$$
(66)

Then, we analyze each term of the right-hand side of (66).

  1. (a)

    According to (27), we have

    $$\begin{aligned} & \left\| \varvec{x}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}- \varvec{x}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\| _{1}= \left\| \varvec{x}^{[n+1]}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}\right\| _{1} \nonumber \\ & \quad \overset{(a)}{=}\ \left\| {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}-\left|u_{[K+1]}^{[n]}\right|{\text {sign}}\left( {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}\right) \varvec{h}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}} \right\| _{1} \nonumber \\ & \quad \overset{(b)}{=}\left\| {u}_{\varLambda ^{[n]} \setminus \mathcal {S}}^{[n]}\right\| _{1}+\left\| {u}_{\mathcal {S}^{[n+1]}\setminus (\mathcal {S}\cup \varLambda ^{[n]})}^{[n]} \right. \nonumber \\ & \qquad \left. -\left|u_{[K+1]}^{[n]}\right|{\text {sign}}\left( {u}_{\mathcal {S}^{[n+1]}\setminus (\mathcal {S}\cup \varLambda ^{[n]})}^{[n]}\right) \varvec{h}_{\mathcal {S}^{[n+1]}\setminus (\mathcal {S}\cup \varLambda ^{[n]})}\right\| _{1} \nonumber \\ & \quad \overset{(c)}{=}\left\| {u}_{\varLambda ^{[n]} \setminus \mathcal {S}}^{[n]}\right\| _{1}+ \left\| {u}_{\mathcal {S}^{[n+1]}\setminus (\mathcal {S}\cup \varLambda ^{[n]})}^{[n]}\right\| _{1} \nonumber \\ & \qquad - \left|\mathcal {S}^{[n+1]}\setminus \left( \mathcal {S}\cup \varLambda ^{[n]}\right) \right|\left|u_{[K+1]}^{[n]}\right|\nonumber \\ & \quad =\left\| {u}_{\mathcal {S}^{[n+1]}\setminus \mathcal {S}}^{[n]}\right\| _{1} - \left| \mathcal {S}^{[n+1]}\setminus \left( \mathcal {S}\cup \varLambda ^{[n]}\right) \right| \left| u_{[K+1]}^{[n]}\right| , \end{aligned}$$
    (67)

    where (a) follows from lines 3 and 4 of Algorithm 1, (43), and (65), (b) and the last equality can be easily verified since \(\varLambda ^{[n]} \subset \mathcal {S}^{[n+1]}\), and (c) is due to: for \(i\in \mathcal {S}^{[n+1]}{\setminus }\left( \mathcal {S}\cup \varLambda ^{[n]}\right) \), it holds that

    $$\begin{aligned}&\left|u_i^{[n]}-\left|u_{[K+1]}^{[n]}\right|{\text {sign}}\left( u_i^{[n]}\right) h_i\right|\\&\qquad \overset{(65)}{=} {\left\{ \begin{array}{ll} \big | u_i^{[n]}-\big | u_{[K+1]}^{[n]}\big |\big | =u_i^{[n]}-\left|u_{[K+1]}^{[n]}\right|=\left|u_i^{[n]}\right|-\left|u_{[K+1]}^{[n]}\right|, & u_i^{[n]}>0\\ \big | u_i^{[n]}+\big | u_{[K+1]}^{[n]}\big |\big | =-u_i^{[n]}-\left|u_{[K+1]}^{[n]}\right|=\left|u_i^{[n]}\right|-\left|u_{[K+1]}^{[n]}\right|, & u_i^{[n]}<0 \end{array}\right. }. \end{aligned}$$
  2. b)

    Based on (27), it holds that

    $$\begin{aligned} \left\Vert \left( {\varvec{x}}^{[n+1]}-{\varvec{x}}\right) _{\mathcal {S}}\right\Vert _{1}\le & \left\Vert \left( {\varvec{x}}^{[n+1]}-{u}^{[n]}\right) _{\mathcal {S}}\right\Vert _{1}+\left\Vert \left( {u}^{[n]}-{\varvec{x}}\right) _{\mathcal {S}}\right\Vert _{1} \nonumber \\\le & \left|\mathcal {S}\setminus \varLambda ^{[n]}\right|\left|u_{[K+1]}^{[n]}\right|+\left\Vert \left( {u}^{[n]}-{\varvec{x}}\right) _{\mathcal {S}}\right\Vert _{1}, \end{aligned}$$
    (68)

    where the last inequality follows from lines 3 and 4 of Algorithm 1 and (43).

Substituting (67) and (68) into (66) results in

$$\begin{aligned} \left\Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\right\Vert _{1}\le & \left\Vert \left( {u}^{[n]}-{\varvec{x}}\right) _{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\right\Vert _{1} + \left( \left|\mathcal {S}\setminus \varLambda ^{[n]}\right|\right) \left|u_{[K+1]}^{[n]}\right|\nonumber \\\le & \left\Vert (\varvec{w}+\varvec{q})_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\right\Vert _{1} + K\left|u_{[K+1]}^{[n]}\right|, \end{aligned}$$
(69)

where the last inequality follows from (20) and \(\left|\mathcal {S}\setminus \varLambda ^{[n]}\right|\le K\).

For \(\Vert (\varvec{w}+\varvec{q})_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\Vert _{1}\), we have

$$\begin{aligned} \Vert (\varvec{w}+\varvec{q})_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\Vert _{1}\le & \Vert \varvec{w}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\Vert _{1}+\Vert \varvec{q}_{\mathcal {S}^{[n+1]}\cup \mathcal {S}}\Vert _{1} \nonumber \\\overset{(a)}{\le } & 2K(1+\beta )\left\Vert \left( \varvec{I}-\frac{\alpha }{1+\beta }\varvec{A}^T\varvec{A}\right) \left( {\varvec{x}}^{[n]}-{\varvec{x}}\right) \right\Vert _{\infty } \nonumber \\ & + \beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _{1} + 2\alpha K \left\Vert \varvec{A}^{T}\varvec{v}\right\Vert _{\infty } \nonumber \\\le & 2\gamma K \left\Vert {\varvec{x}}^{[n]}-{\varvec{x}}\right\Vert _1 + \beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _1 + 2\alpha K \Vert \varvec{v}\Vert _{2}, \end{aligned}$$
(70)

where (a) follows from (22), (23), and \(\left|\mathcal {S}^{[n+1]}\cup \mathcal {S}\right|\le 2K\), and the last inequality is due to (18), (19), and (24).

Substituting (21) and (70) into (69) yields

$$\begin{aligned} \Vert {\varvec{x}}^{[n+1]}-{\varvec{x}}\Vert _{1}\le & 2\gamma K \left\Vert {\varvec{x}}^{[n]}-{\varvec{x}}\right\Vert _1 + \beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _1 + 2\alpha K \Vert \varvec{v}\Vert _{2} \nonumber \\ & +K(\gamma \left\Vert {\varvec{x}}^{[n]}-{\varvec{x}}\right\Vert _{1} + \beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _{1} + \alpha \Vert \varvec{v}\Vert _2) \nonumber \\= & 3\gamma K\Vert {\varvec{x}}^{[n]}-{\varvec{x}}\Vert _1 + (K+1)\beta \left\Vert {\varvec{x}}^{[n-1]}-{\varvec{x}}\right\Vert _1 + 3\alpha K\Vert \varvec{v}\Vert _2, \end{aligned}$$
(71)

where \(\gamma \) has been defined in (24).

According to (24), when \(\mu \) satisfies (33) while \(\alpha \) and \(\beta \) fulfill (34), it holds that \(\gamma =\mu \alpha \), resulting in

$$\begin{aligned} 3\gamma K=3\alpha \mu K<1-(K+1)\beta , \end{aligned}$$

where the inequality follows from the range of \(\alpha \) in (34). This implies \(3\alpha \mu K+(K+1)\beta <1\), and combining with (71) and Lemma 3 yield (35) and (36). Hence, we prove Theorem 2. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Wang, ZY., Wen, J. et al. Non-negative Sparse Recovery via Momentum-Boosted Adaptive Thresholding Algorithm. J Sci Comput 101, 47 (2024). https://doi.org/10.1007/s10915-024-02660-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02660-9

Keywords

Mathematics Subject Classification