Skip to main content
Log in

Stabilized Variational Formulations of Chorin-Type and Artificial Compressibility Methods for the Stochastic Stokes–Darcy Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider two different types of numerical schemes for the nonstationary stochastic Stokes–Darcy equations with multiplicative noise. Firstly, we consider the Chorin-type time-splitting scheme for the Stokes equation in the free fluid region. The Darcy equation and an elliptic equation for the intermediate velocity of free fluid coupled with the interface conditions are solved, and then the velocity and pressure in free fluid region are updated by an elliptic system. Secondly, we further consider the artificial compressibility method (ACM) which separates the fully coupled Stokes–Darcy model into two smaller subphysics problems. The ACM reduces the storage and the computational time at each time step, and allows parallel computing for the decoupled problems. The pressure in free fluid region only needs to be updated at each time step without solving an elliptic system. We utilize the RT\(_1\)-P\(_1\) pair finite element space and the interior penalty discontinuous Galerkin (IPDG) scheme based on the BDM\(_1\)-P\(_0\) finite element space in the spatial discretizations. Under usual assumptions for the multiplicative noise, we prove that both of the Chorin-type scheme and the ACM are unconditionally stable. We present the error estimates for the time semi-discretization of the Chorin-type scheme. Numerical examples are provided to verify the stability estimates for both of schemes. Moreover, we test the convergence rate for the velocity in time for both of schemes, and the convergence rate for the pressure approximation in time average is also tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous media. Comput. Geosci. 11, 207–218 (2007)

    Article  MathSciNet  Google Scholar 

  2. Ambartsumyan, I., Khattatov, E., Wang, C., Yotov, I.: Stochastic multiscale flux basis for Stokes-Darcy flows. J. Comput. Phys. 401, 109011 (2020)

    Article  MathSciNet  Google Scholar 

  3. Breit, D., Dogson, A.: Convergence rates for the numerical approximation of the 2D stochastic Navier-Stokes equations. Numer. Math. 147, 553–578 (2021)

    Article  MathSciNet  Google Scholar 

  4. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer (1991)

    Book  Google Scholar 

  6. Camano, J., Gatica, G.N., Oyarzua, R., Ruiz-Baier, R., Venegas, P.: New fully-mixed finite element methods for the Stokes-Darcy coupling. Comput. Methods Appl. Mech. Eng. 295, 362–395 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  Google Scholar 

  8. Carelli, E., Hausenblas, E., Prohl, A.: Time-splitting methods to solve the stochastic incompressible Stokes equations. SIAM J. Numer. Anal. 50, 2917–2939 (2012)

    Article  MathSciNet  Google Scholar 

  9. Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 50, 2467–2496 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chen, R.M., Layton, W., McLaughlin, M.: Analysis of variable-step/non-autonomous artificial compression methods. J. Math. Fluid Mech. 21, 30 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chen, H., Wang, X.-P.: A one-domain approach for modeling and simulation of free fluid over a porous media. J. Comp. Phys. 259, 650–671 (2014)

    Article  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  13. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762 (1968)

    Article  MathSciNet  Google Scholar 

  14. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comp. Phys. 2, 12–26 (1967)

    Article  MathSciNet  Google Scholar 

  15. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press (1991)

    Google Scholar 

  16. DeCaria, V., Illiescu, T., Layton, W., McLaughlin, M., Schneier, M.: An artificial compression reduced order model. SIAM J. Numer. Anal. 58, 565–589 (2020)

    Article  MathSciNet  Google Scholar 

  17. DeCaria, V., Layton, W., McLaughlin, M.: A conservative, second order, unconditionally stable artificial compression method. Comput. Method. Appl. M. 325, 733–747 (2017)

    Article  MathSciNet  Google Scholar 

  18. Dixon, J., McKee, S.: Weakly singular Gronwall inequalities. ZAMM Z. Angew. Math. Mech. 66, 535–544 (1986)

    Article  MathSciNet  Google Scholar 

  19. Feng, X., Prohl, A., Vo, L.: Optimally convergent mixed finite element methods for the stochastic Stokes equations. IMA J. Numer. Anal. 41, 2280–2310 (2021)

    Article  MathSciNet  Google Scholar 

  20. Feng, X., Qiu, H.: Analysis of fully discrete mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise. J. Sci. Comp. 88, 1573–7691 (2021)

    Article  MathSciNet  Google Scholar 

  21. Feng, X., Vo, L.: Analysis of Chorin-type projection methods for the stochastic Stokes equations with general multiplicative noises, Stoch. PDE: Anal. Comp. pp. 1–38, (2022)

  22. Guermond, J., Minev, P.: High-order time stepping for the Navier-Stokes equations with minimal computational complexity. J. Comput. Appl. Math. 310, 92–103 (2017)

    Article  MathSciNet  Google Scholar 

  23. Guermond, J., Minev, P.: High-order adaptive time stepping for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 41, A770–A788 (2019)

    Article  MathSciNet  Google Scholar 

  24. He, X., Jiang, N., Qiu, C.: An artificial compressibility ensemble algorithm for a stochastic Stokes-Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Meth. Eng. 121, 712–739 (2020)

    Article  MathSciNet  Google Scholar 

  25. Jiang, N., Li, Y., Yang, H.: An artificial compressibility Crank-Nicolson leap-frog method for the Stokes-Darcy model and application in ensemble simulations. SIAM J. Numer. Anal. 59, 401–428 (2021)

    Article  MathSciNet  Google Scholar 

  26. Kanschat, G., Rivière, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  MathSciNet  Google Scholar 

  27. Karper, T., Mardal, K.-A., Winther, R.: Unified finite element discretizations of coupled Darcy-Stokes flow. Numer. Meth. Part. D. E. 25, 311–326 (2009)

    Article  MathSciNet  Google Scholar 

  28. Kruse, R.: Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Springer (2014)

    Book  Google Scholar 

  29. Kumar, P., Luo, P., Gaspar, F.J., Oosterlee, C.W.: A multigrid multilevel Monte Carlo method for transport in the Darcy-Stokes system. J. Comput. Phys. 371, 382–408 (2018)

    Article  MathSciNet  Google Scholar 

  30. Kuznetsov, B., Vladimirova, N., Yanenko, N.: Numerical Calculation of the Symmetrical Flow of Viscous Incompressible Liquid around a Plate (in Russian), Studies in Mathematics and its Applications, Moscow: Nauka, (1966)

  31. Layton, W., McLaughlin, M.: Doubly-adaptive artificial compression methods for incompressible flow. J. Numer. Math. 28, 175–192 (2020)

    Article  MathSciNet  Google Scholar 

  32. Li, Y., Hou, Y., Rong, Y.: A second-order artificial compression method for the evolutionary Stokes-Darcy system. Numer. Algorithms 84, 1019–1048 (2020)

    Article  MathSciNet  Google Scholar 

  33. Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs: Galerkin Approximation and Finite Elements. Cambridge University Press (2014)

    Book  Google Scholar 

  34. Márquez, A., Meddahi, S., Sayas, F.-J.: Strong coupling of finite element methods for the Stokes-Darcy problem. IMA J. Numer. Anal. 35, 969–988 (2015)

    Article  MathSciNet  Google Scholar 

  35. Roman, L.J., Sarkis, M.: Stochastic galerkin method for elliptic SPDEs: a white noise approach. Discrete Contin. Dyn. Syst. Ser. B 6, 941–955 (2006)

    MathSciNet  Google Scholar 

  36. Saffman, P.G.: On the boundary condition at the interface of a porous media. Stud. Appl. Math. 1, 93–101 (1971)

    Article  Google Scholar 

  37. Tartakovsky, A.M., Tartakovsky, D.M., Meakin, P.: Stochastic Langevin model for flow and transport in porous media. Phys. Rev. Lett. 101, 044502 (2008)

    Article  Google Scholar 

  38. Temam, R.: Une méthode d’approximation des solutions des équations de Navier-Stokes. Bull. Soc. Math. France 98, 115–152 (1968)

    Article  Google Scholar 

  39. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I). Arch. Rational. Mech. Anal. 33, 135–153 (1969)

    Article  Google Scholar 

  40. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II), Arch. Rational. Mech. Anal., 33, pp. 377–385 (1969)

  41. Xiang, Y., Huang, C., Chen, H.: Optimal convergence analysis of a fully discrete scheme for the stochastic Stokes-Darcy equations. J. Sci. Comput. 94, 13 (2023)

    Article  MathSciNet  Google Scholar 

  42. Yang, Z., Li, X., He, X., Ming, J.: A stochastic collocation method based on sparse grids for a stochastic Stokes-Darcy model. Discrete Contin. Dyn. Syst. Ser. S 15, 893–912 (2022)

    Article  MathSciNet  Google Scholar 

  43. Zhang, D.: Stochastic Methods for Flow in Porous Media: Coping with Uncertainties, Academic, (2002)

Download references

Funding

The work of Huangxin Chen was supported by the National Key Research and Development Project of China (Grant No. 2023YFA1011702) and the National Natural Science Foundation of China (Grant No. 12122115). The work of Can Huang was supported by the NSF of China (Grant No. 12271457). The work of Shuyu Sun was supported by King Abdullah University of Science and Technology (KAUST) through the Grants BAS/1/1351-01 and URF/1/5028-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyu Sun.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Huang, C., Sun, S. et al. Stabilized Variational Formulations of Chorin-Type and Artificial Compressibility Methods for the Stochastic Stokes–Darcy Equations. J Sci Comput 101, 22 (2024). https://doi.org/10.1007/s10915-024-02663-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02663-6

Keywords