Skip to main content
Log in

A Modified Interior Penalty Virtual Element Method for Fourth-Order Singular Perturbation Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is dedicated to the numerical solution of a fourth-order singular perturbation problem using the interior penalty virtual element method (IPVEM). Compared with the original IPVEM proposed in Zhao et al. (Math Comp 92(342):1543–1574, 2023), the study introduces modifications to the jumps and averages in the penalty term, as well as presents a mesh-dependent selection of the penalty parameter. Drawing inspiration from the modified Morley finite element methods, we leverage the conforming interpolation technique to handle the lower part of the bilinear form in the error analysis. We establish the optimal convergence in the energy norm and provide a rigorous proof of uniform convergence concerning the perturbation parameter in the lowest-order case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no data was generated or analyzed.

References

  1. Adak, D., Natarajan, S.: Virtual element method for semilinear sine-Gordon equation over polygonal mesh using product approximation technique. Math. Comput. Simul. 172, 224–243 (2020)

    MathSciNet  Google Scholar 

  2. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    MathSciNet  Google Scholar 

  3. Alvarez, S.N., Beirão Da Veiga, L., Dassi, F., Gyrya, V., Manzini, G.: The virtual element method for a 2D incompressible MHD system. Math. Comput. Simul. 211, 301–328 (2023)

    MathSciNet  Google Scholar 

  4. Antonietti, P.F., Beirão da Veiga, L., Manzini, G.: The Virtual Element Method and Its Applications. Springer, Cham (2022)

    Google Scholar 

  5. Antonietti, P.F., Bruggi, M., Scacchi, S., Verani, M.: On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput. Math. Appl. 74(5), 1091–1109 (2017)

    MathSciNet  Google Scholar 

  6. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)

    MathSciNet  Google Scholar 

  7. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    MathSciNet  Google Scholar 

  8. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    MathSciNet  Google Scholar 

  9. Beirão Da Veiga, L., Dassi, F., Manzini, G., Mascotto, L.: The virtual element method for the 3D resistive magnetohydrodynamic model. Math. Models Methods Appl. Sci. 33(3), 643–686 (2023)

    MathSciNet  Google Scholar 

  10. Beirão Da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)

    MathSciNet  Google Scholar 

  11. Beirão Da Veiga, L., Mora, D., Vacca, G.: The Stokes complex for virtual elements with application to Navier–Stokes flows. J. Sci. Comput. 81, 990–1018 (2019)

    MathSciNet  Google Scholar 

  12. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    MathSciNet  Google Scholar 

  13. Brenner, S.C., Neilan, M.: A \(C^0\) interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)

    MathSciNet  Google Scholar 

  14. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    Google Scholar 

  15. Brenner, S.C., Sung, L.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)

    MathSciNet  Google Scholar 

  16. Brezzi, F., Buffa, A., Lipnikov, K.: Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal. 43(2), 277–295 (2009)

    MathSciNet  Google Scholar 

  17. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    MathSciNet  Google Scholar 

  18. Bringmann, P., Carstensen, C., Streitberger, J.: Local parameter selection in the \(C^0\) interior penalty method for the biharmonic equation. J. Numer. Math. 6, 66 (2023)

    Google Scholar 

  19. Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)

    MathSciNet  Google Scholar 

  20. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2016)

    MathSciNet  Google Scholar 

  21. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), 5 (2018)

    MathSciNet  Google Scholar 

  22. Chen, L., Huang, X.: Nonconforming virtual element method for \(2m\)-th order partial differential equations in \(R^n\). Math. Comput. 89(324), 1711–1744 (2020)

    Google Scholar 

  23. Chi, H., Pereira, A., Menezes, I.F.M., Paulino, G.H.: Virtual element method (VEM)-based topology optimization: an integrated framework. Struct. Multidiscip. Optim. 62(3), 1089–1114 (2020)

    MathSciNet  Google Scholar 

  24. Chinosi, C., Marini, L.D.: Virtual element method for fourth order problems: \(L^2\)-estimates. Comput. Math. Appl. 72(8), 1959–1967 (2016)

    MathSciNet  Google Scholar 

  25. Ciarlet, P.G.: The Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  26. De Dios, B.A., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)

    MathSciNet  Google Scholar 

  27. Feng, F., Han, W., Huang, J.: Virtual element method for an elliptic hemivariational inequality with applications to contact mechanics. J. Sci. Comput. 81(3), 2388–2412 (2019)

    MathSciNet  Google Scholar 

  28. Feng, F., Han, W., Huang, J.: A nonconforming virtual element method for a fourth-order hemivariational inequality in Kirchhoff plate problem. J. Sci. Comput. 90(3), 89 (2022)

    MathSciNet  Google Scholar 

  29. Gatica, G.N., Munar, M.: A mixed virtual element method for the Navier–Stokes equations. Math. Models Methods Appl. Sci. 28(14), 2719–2762 (2018)

    MathSciNet  Google Scholar 

  30. Huang, J., Yu, Y.: A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations. J. Comput. Appl. Math. 386, 113229 (2021)

    MathSciNet  Google Scholar 

  31. Ling, M., Wang, F., Han, W.: The nonconforming virtual element method for a stationary Stokes hemivariational inequality with slip boundary condition. J. Sci. Comput. 85(3), Paper No. 56 (2020)

  32. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)

    MathSciNet  Google Scholar 

  33. Nilssen, T.K., Tai, X., Winther, R.: A robust nonconforming \(H^2\)-element. Math. Comput. 70(234), 489–505 (2001)

    Google Scholar 

  34. Qiu, J., Wang, F., Ling, M., Zhao, J.: The interior penalty virtual element method for the fourth-order elliptic hemivariational inequality. Commun. Nonlinear Sci. Numer. Simul. 127(4644807), Paper No. 107547 (2023)

  35. Semper, B.: Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal. 29(4), 1043–1058 (1992)

    MathSciNet  Google Scholar 

  36. Talischi, C., Paulino, G.H., Pereira, A., Ivan Menezes, F.M.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    MathSciNet  Google Scholar 

  37. Wang, F., Wei, H.: Virtual element method for simplified friction problem. Appl. Math. Lett. 85(3820290), 125–131 (2018)

    MathSciNet  Google Scholar 

  38. Wang, F., Wu, B., Han, W.: The virtual element method for general elliptic hemivariational inequalities. J. Comput. Appl. Math. 389(4194398), Paper No. 113330 (2021)

  39. Wang, F., Zhao, J.: Conforming and nonconforming virtual element methods for a Kirchhoff plate contact problem. IMA J. Numer. Anal. 41(2), 1496–1521 (2021)

    MathSciNet  Google Scholar 

  40. Wang, M.: On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J. Numer. Anal. 39(2), 363–384 (2001)

    MathSciNet  Google Scholar 

  41. Wang, M., Xu, J., Hu, Y.: Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math. 24(2), 113–120 (2006)

    MathSciNet  Google Scholar 

  42. Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003)

    MathSciNet  Google Scholar 

  43. Xiao, W., Ling, M.: Virtual element method for a history-dependent variational–hemivariational inequality in contact problems. J. Sci. Comput. 96(3), Paper No. 82 (2023)

  44. Zhang, B., Zhao, J.: The virtual element method with interior penalty for the fourth-order singular perturbation problem. Commun. Nonlinear Sci. Numer. Simul. 133, Paper No. 107964 (2024)

  45. Zhang, B., Zhao, J., Chen, S.: The nonconforming virtual element method for fourth-order singular perturbation problem. Adv. Comput. Math. 46(2), Paper No. 19 (2020)

  46. Zhang, X., Chi, H., Paulino, G.H.: Adaptive multi-material topology optimization with hyperelastic materials under large deformations: a virtual element approach. Comput. Methods Appl. Mech. Eng. 370(4129484), 112976 (2020)

  47. Zhao, J., Mao, S., Zhang, B., Wang, F.: The interior penalty virtual element method for the biharmonic problem. Math. Comp. 92(342), 1543–1574 (2023)

    MathSciNet  Google Scholar 

  48. Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76(1), 610–629 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate the anonymous referees for their meticulous line-by-line examination and for providing valuable comments and suggestions, which greatly improved an earlier version of the paper.

Funding

Fang Feng was supported by the National Science Foundation for Young Scientists of China (No. 12401528) and also partially supported by Central Government Special Fund for Basic Scientific Research Business Expenses of Colleges and Universities, No. 30924010837. Yue Yu was partially supported by the National Science Foundation for Young Scientists of China (No. 12301561).

Author information

Authors and Affiliations

Authors

Contributions

Fang Feng and Yue Yu collaborated closely to shape the conceptualization, methodology, and writing of this research. Additionally, Yue Yu took charge of implementing the discrete method in the study. Fang Feng also checked the implementation details.

Corresponding author

Correspondence to Yue Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, F., Yu, Y. A Modified Interior Penalty Virtual Element Method for Fourth-Order Singular Perturbation Problems. J Sci Comput 101, 21 (2024). https://doi.org/10.1007/s10915-024-02665-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02665-4

Keywords