Abstract
This paper is dedicated to the numerical solution of a fourth-order singular perturbation problem using the interior penalty virtual element method (IPVEM). Compared with the original IPVEM proposed in Zhao et al. (Math Comp 92(342):1543–1574, 2023), the study introduces modifications to the jumps and averages in the penalty term, as well as presents a mesh-dependent selection of the penalty parameter. Drawing inspiration from the modified Morley finite element methods, we leverage the conforming interpolation technique to handle the lower part of the bilinear form in the error analysis. We establish the optimal convergence in the energy norm and provide a rigorous proof of uniform convergence concerning the perturbation parameter in the lowest-order case.




Similar content being viewed by others
Data Availability
Data sharing is not applicable to this article as no data was generated or analyzed.
References
Adak, D., Natarajan, S.: Virtual element method for semilinear sine-Gordon equation over polygonal mesh using product approximation technique. Math. Comput. Simul. 172, 224–243 (2020)
Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)
Alvarez, S.N., Beirão Da Veiga, L., Dassi, F., Gyrya, V., Manzini, G.: The virtual element method for a 2D incompressible MHD system. Math. Comput. Simul. 211, 301–328 (2023)
Antonietti, P.F., Beirão da Veiga, L., Manzini, G.: The Virtual Element Method and Its Applications. Springer, Cham (2022)
Antonietti, P.F., Bruggi, M., Scacchi, S., Verani, M.: On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput. Math. Appl. 74(5), 1091–1109 (2017)
Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)
Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)
Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)
Beirão Da Veiga, L., Dassi, F., Manzini, G., Mascotto, L.: The virtual element method for the 3D resistive magnetohydrodynamic model. Math. Models Methods Appl. Sci. 33(3), 643–686 (2023)
Beirão Da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)
Beirão Da Veiga, L., Mora, D., Vacca, G.: The Stokes complex for virtual elements with application to Navier–Stokes flows. J. Sci. Comput. 81, 990–1018 (2019)
Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)
Brenner, S.C., Neilan, M.: A \(C^0\) interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)
Brenner, S.C., Sung, L.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)
Brezzi, F., Buffa, A., Lipnikov, K.: Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal. 43(2), 277–295 (2009)
Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)
Bringmann, P., Carstensen, C., Streitberger, J.: Local parameter selection in the \(C^0\) interior penalty method for the biharmonic equation. J. Numer. Math. 6, 66 (2023)
Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)
Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2016)
Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), 5 (2018)
Chen, L., Huang, X.: Nonconforming virtual element method for \(2m\)-th order partial differential equations in \(R^n\). Math. Comput. 89(324), 1711–1744 (2020)
Chi, H., Pereira, A., Menezes, I.F.M., Paulino, G.H.: Virtual element method (VEM)-based topology optimization: an integrated framework. Struct. Multidiscip. Optim. 62(3), 1089–1114 (2020)
Chinosi, C., Marini, L.D.: Virtual element method for fourth order problems: \(L^2\)-estimates. Comput. Math. Appl. 72(8), 1959–1967 (2016)
Ciarlet, P.G.: The Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1978)
De Dios, B.A., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)
Feng, F., Han, W., Huang, J.: Virtual element method for an elliptic hemivariational inequality with applications to contact mechanics. J. Sci. Comput. 81(3), 2388–2412 (2019)
Feng, F., Han, W., Huang, J.: A nonconforming virtual element method for a fourth-order hemivariational inequality in Kirchhoff plate problem. J. Sci. Comput. 90(3), 89 (2022)
Gatica, G.N., Munar, M.: A mixed virtual element method for the Navier–Stokes equations. Math. Models Methods Appl. Sci. 28(14), 2719–2762 (2018)
Huang, J., Yu, Y.: A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations. J. Comput. Appl. Math. 386, 113229 (2021)
Ling, M., Wang, F., Han, W.: The nonconforming virtual element method for a stationary Stokes hemivariational inequality with slip boundary condition. J. Sci. Comput. 85(3), Paper No. 56 (2020)
Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)
Nilssen, T.K., Tai, X., Winther, R.: A robust nonconforming \(H^2\)-element. Math. Comput. 70(234), 489–505 (2001)
Qiu, J., Wang, F., Ling, M., Zhao, J.: The interior penalty virtual element method for the fourth-order elliptic hemivariational inequality. Commun. Nonlinear Sci. Numer. Simul. 127(4644807), Paper No. 107547 (2023)
Semper, B.: Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal. 29(4), 1043–1058 (1992)
Talischi, C., Paulino, G.H., Pereira, A., Ivan Menezes, F.M.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)
Wang, F., Wei, H.: Virtual element method for simplified friction problem. Appl. Math. Lett. 85(3820290), 125–131 (2018)
Wang, F., Wu, B., Han, W.: The virtual element method for general elliptic hemivariational inequalities. J. Comput. Appl. Math. 389(4194398), Paper No. 113330 (2021)
Wang, F., Zhao, J.: Conforming and nonconforming virtual element methods for a Kirchhoff plate contact problem. IMA J. Numer. Anal. 41(2), 1496–1521 (2021)
Wang, M.: On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J. Numer. Anal. 39(2), 363–384 (2001)
Wang, M., Xu, J., Hu, Y.: Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math. 24(2), 113–120 (2006)
Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003)
Xiao, W., Ling, M.: Virtual element method for a history-dependent variational–hemivariational inequality in contact problems. J. Sci. Comput. 96(3), Paper No. 82 (2023)
Zhang, B., Zhao, J.: The virtual element method with interior penalty for the fourth-order singular perturbation problem. Commun. Nonlinear Sci. Numer. Simul. 133, Paper No. 107964 (2024)
Zhang, B., Zhao, J., Chen, S.: The nonconforming virtual element method for fourth-order singular perturbation problem. Adv. Comput. Math. 46(2), Paper No. 19 (2020)
Zhang, X., Chi, H., Paulino, G.H.: Adaptive multi-material topology optimization with hyperelastic materials under large deformations: a virtual element approach. Comput. Methods Appl. Mech. Eng. 370(4129484), 112976 (2020)
Zhao, J., Mao, S., Zhang, B., Wang, F.: The interior penalty virtual element method for the biharmonic problem. Math. Comp. 92(342), 1543–1574 (2023)
Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76(1), 610–629 (2018)
Acknowledgements
The authors deeply appreciate the anonymous referees for their meticulous line-by-line examination and for providing valuable comments and suggestions, which greatly improved an earlier version of the paper.
Funding
Fang Feng was supported by the National Science Foundation for Young Scientists of China (No. 12401528) and also partially supported by Central Government Special Fund for Basic Scientific Research Business Expenses of Colleges and Universities, No. 30924010837. Yue Yu was partially supported by the National Science Foundation for Young Scientists of China (No. 12301561).
Author information
Authors and Affiliations
Contributions
Fang Feng and Yue Yu collaborated closely to shape the conceptualization, methodology, and writing of this research. Additionally, Yue Yu took charge of implementing the discrete method in the study. Fang Feng also checked the implementation details.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Feng, F., Yu, Y. A Modified Interior Penalty Virtual Element Method for Fourth-Order Singular Perturbation Problems. J Sci Comput 101, 21 (2024). https://doi.org/10.1007/s10915-024-02665-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02665-4