Skip to main content
Log in

Linearly Implicit Schemes Preserve the Maximum Bound Principle and Energy Dissipation for the Time-fractional Allen–Cahn Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents two highly efficient numerical schemes for the time-fractional Allen–Cahn equation that preserve the maximum bound principle and energy dissipation in discrete settings. To this end, we utilize a generalized auxiliary variable approach proposed in a recent paper (Ju et al. in SIAM J Numer Anal 60:1905–1931, 2022) to reformulate the governing equation into an equivalent system that follows a modified energy functional and the maximum bound principle at each continuous level. By combining the L1-type formula of the Riemann–Liouville fractional derivative with the Crank–Nicolson method, we construct two novel linearly implicit schemes by introducing the first- and second-order stabilized terms, respectively. These schemes are proved to be energy stable and maximum bound principle preserving on nonuniform time meshes with the help of the discrete orthogonal convolution technique. In addition, we obtain the unique solvability of the proposed schemes without any time-space step ratio. Finally, we report extensive numerical results to verify the correctness of the theoretical analysis and the performance of the proposed schemes in long-time simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Akinyemi, L., Iyiola, O., Akpan, U.: Iterative methods for solving fourth-and sixth-order time-fractional Cahn–Hillard equation. Math. Meth. Appl. Sci. 43, 4050–4074 (2020)

    MathSciNet  Google Scholar 

  2. Allen, S., Cahn, J.: Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall. 20, 423–433 (1972)

    Google Scholar 

  3. Alsaedi, A., Ahmad, B., Kirane, M.: Maximum principle for certain generalized time and space fractional diffusion equations. Quart. Appl. Math. 73, 163–175 (2015)

    MathSciNet  Google Scholar 

  4. Anderson, D., McFadden, G., Wheeler, A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    MathSciNet  Google Scholar 

  5. Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys 28, 258–267 (1958)

    Google Scholar 

  6. Clarke, S., Vvedensky, D.: Origin of reflection high-energy electron-diraction intensity oscillations during molecular-beam epitaxy: a computational modeling approach. Phys. Rev. Lett. 58, 2235–2238 (1987)

    Google Scholar 

  7. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    MathSciNet  Google Scholar 

  8. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2019)

    MathSciNet  Google Scholar 

  9. Du, Q., Yang, J., Zhou, Z.: Time-fractional Allen–Cahn equations: analysis and numerical methods. J. Sci. Comput. 85, 42 (2020)

    MathSciNet  Google Scholar 

  10. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 57, 317–359 (2021)

    MathSciNet  Google Scholar 

  11. Fan, E., Li, C.: Diffusion in Allen–Cahn equation: normal vs anomalous. Physica D 457, 133973 (2024)

    MathSciNet  Google Scholar 

  12. Fritz, M., Lima, E., Nikolic, V., Oden, J., Wohlmuth, B.: Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation. Math. Models Meth. Appl. Sci. 29, 2433–2468 (2019)

    MathSciNet  Google Scholar 

  13. Fritz, M., Rajendran, M., Wohlmuth, B.: Time-fractional Cahn–Hilliard equation: well-posedness, degeneracy, and numerical solutions. Comput. Appl. Appl. 188, 66–87 (2022)

    MathSciNet  Google Scholar 

  14. Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87, 675–699 (2001)

    MathSciNet  Google Scholar 

  15. Gao, Z., Zhang, H., Qian, X., Song, S.: High-order unconditionally maximum-principle-preserving parametric integrating factor Runge–Kutta schemes for the nonlocal Allen–Cahn equation. Appl. Numer. Math. 194, 97–114 (2023)

    MathSciNet  Google Scholar 

  16. Hawkins-Daarud, A., Zee, K., Oden, J.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 8, 3–24 (2012)

    MathSciNet  Google Scholar 

  17. Hou, D., Xu, C.: Highly efficient and energy dissipative schemes for the time fractional Allen–Cahn equation. SIAM J. Sci. Comput. 43, A3305–A3327 (2021)

    MathSciNet  Google Scholar 

  18. Hou, D., Xu, C.: A second order energy dissipative scheme for time fractional \(L^2\) gradient flows using SAV approach. J. Sci. Comput. 90, 25 (2022)

    Google Scholar 

  19. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    MathSciNet  Google Scholar 

  20. Hou, D., Zhu, H., Xu, C.: Highly efficient schemes for time-fractional Allen–Cahn equation using extended SAV approach. Numer. Algorithms 88, 1077–1108 (2021)

    MathSciNet  Google Scholar 

  21. Huang, C., Stynes, M.: Optimal \(H^1\) spatial convergence of a fully discrete finite element method for the time-fractional Allen–Cahn equation. Adv. Comput. Math. 46, 63 (2020)

    Google Scholar 

  22. Ji, B., Liao, H., Zhang, L.: Simple maximum-principle preserving time-stepping methods for time-fractional Allen–Cahn equation. Adv. Comput. Math. 46, 37 (2020)

    MathSciNet  Google Scholar 

  23. Ji, B., Liao, H., Gong, Y., Zhang, L.: Adaptive linear second-order energy-stable schemes for time-fractional Allen–Cahn equation with volume constrain. Commun. Nonlinear Sci. Numer. Simul. 90, 105366 (2020)

    MathSciNet  Google Scholar 

  24. Jia, J., Zhang, H., Xu, H., Jiang, X.: An efficient second order stabilized scheme for the two dimensional time fractional Allen–Cahn equation. Appl. Numer. Math. 165, 216–231 (2021)

    MathSciNet  Google Scholar 

  25. Jin, B., Li, B., Zhou, Z.: Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping. Numer. Math. 145, 883–913 (2020)

    MathSciNet  Google Scholar 

  26. Ju, L., Li, X., Qiao, Z.: Generalized SAV-exponential integrator schemes for Allen–Cahn type gradient flows. SIAM J. Numer. Anal. 60, 1905–1931 (2022)

    MathSciNet  Google Scholar 

  27. Li, D.: Energy-dissipation for time-fractional phase-field equations. Commun. Pure Appl. Anal. 21, 3371–3387 (2022)

    MathSciNet  Google Scholar 

  28. Li, C., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM, Philadelphia (2020)

    Google Scholar 

  29. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)

    MathSciNet  Google Scholar 

  30. Liao, H., McLean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    MathSciNet  Google Scholar 

  31. Liao, H., Tao, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen–Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    MathSciNet  Google Scholar 

  32. Liao, H., Tang, T., Zhou, T.: An energy-stable and maximum bound preserving scheme with variable time steps time fractional Allen–Cahn equations. SIAM J. Sci. Comput. 43, A3503–A3526 (2021)

    MathSciNet  Google Scholar 

  33. Liao, H., Zhu, X., Wang, J.: The variable-step L1 scheme preserving a compatible energy law for time-fractional Allen–Cahn equation. Numer. Math. Theory Methods Appl. 15, 1128–1146 (2022)

    MathSciNet  Google Scholar 

  34. Liao, H., Liu, N., Lyu, P.: Discrete gradient structure of a second-order variable-step method for nonlinear integro-differential models. SIAM J. Numer. Anal. 61, 2157–2181 (2023)

    MathSciNet  Google Scholar 

  35. Liao, H., Zhu, X., Sun, H.: Asymptotically compatible energy and dissipation law of the nonuniform L2-1\(_\sigma \) scheme for time fractional Allen–Cahn model. J. Sci. Comput. 99, 46 (2024)

    MathSciNet  Google Scholar 

  36. Liu, Z., Huang, X.. Li.. J..: Accurate and efficient algorithms with unconditional energy stability for the time fractional Cahn–Hilliard and Allen–Cahn equations. Numer. Methods Partial Differ. Equ. 37, 2613–2633 (2021)

    MathSciNet  Google Scholar 

  37. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)

    MathSciNet  Google Scholar 

  38. Ma, L., Chen, R., Yang, X., Zhang, H.: Numerical approximations for Allen–Cahn type phase field model of two-phase incompressible fluids with moving contact lines. Commun. Comput. Phys. 27, 867–889 (2017)

    MathSciNet  Google Scholar 

  39. Olver, P.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)

    Google Scholar 

  40. Qin, H., Li, D., Zhang, Z.: A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations. J. Sci. Comput. 89, 65 (2021)

    MathSciNet  Google Scholar 

  41. Quan, C., Wang, B.: Energy stable L2 schemes for time-fractional phase-field equations. J. Comput. Phys. 458, 111085 (2022)

    MathSciNet  Google Scholar 

  42. Quan, C., Tang, T., Yang, J.: How to define dissipation-preserving energy for time-fractional phase-field equations. CSIAM Trans. Appl. Math. 1, 478–490 (2020)

    Google Scholar 

  43. Quan, C., Tang, T., Wang, B., Yang, J.: A decreasing upper bound of energy for time-fractional phase-field equations. Commun. Comput. Phys. 33, 962–991 (2023)

    MathSciNet  Google Scholar 

  44. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28, 1669–1691 (2010)

    MathSciNet  Google Scholar 

  45. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  Google Scholar 

  46. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 5, 1057–1079 (2017)

    MathSciNet  Google Scholar 

  47. Sun, Z., Gao, G.: Fractional Differential Equations: Finite Difference Methods. Secience Press, Beijing (2020)

    Google Scholar 

  48. Tang, T., Qiao, Z.: Efficient numerical methods for phase-field equations (in Chinese). Sci. Sin. Math. 50, 1–20 (2020)

    Google Scholar 

  49. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. Comput. Math. 34, 451–461 (2016)

    MathSciNet  Google Scholar 

  50. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase field equations. SIAM J. Sci. Comput. 41, A3757–A3778 (2019)

    MathSciNet  Google Scholar 

  51. van der Waals, J.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20, 200–244 (1979)

    Google Scholar 

  52. Xing, Z., Wen, L.: Numerical analysis of the nonuniform fast L1 formula for nonlinear time-space fractional parabolic equations. J. Sci. Comput. 95, 58 (2023)

    MathSciNet  Google Scholar 

  53. Xu, X., Di, Y., Yu, H.: Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines. J. Fluid Mech. 849, 805–833 (2018)

    MathSciNet  Google Scholar 

  54. Yang, X.: Linear, first and second-order, unconditionally energy-stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  Google Scholar 

  55. Yang, Z., Zeng, F.: A linearly stabilized convolution quadrature method for the time-fractional Allen–Cahn equation. Appl. Math. Lett. 144, 108698 (2023)

    MathSciNet  Google Scholar 

  56. Yao, C., Fan, H., Zhao, Y., Shi, Y., Wang, F.: Fast algorithm for nonlocal Allen–Cahn equation with scalar auxiliary variable approach. Appl. Math. Lett. 126, 107805 (2022)

    MathSciNet  Google Scholar 

  57. Yu, Y., Zhang, J., Qin, R.: The exponential SAV approach for the time-fractional Allen–Cahn and Cahn–Hilliard phase-field models. J. Sci. Comput. 33, 94 (2023)

    MathSciNet  Google Scholar 

  58. Zhang, H., Yan, J., Qian, X., Gu, X., Song, S.: On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge–Kutta schemes for the space-fractional Allen–Cahn equation. Numer. Algorithms 88, 1309–1336 (2021)

    MathSciNet  Google Scholar 

  59. Zhang, G., Huang, C., Alikhanov, A., Yin, B.: A high-order discrete energy decay and maximum-principle preserving scheme for time fractional Allen–Cahn equation. J. Sci. Comput. 96, 39 (2023)

    MathSciNet  Google Scholar 

  60. Zhao, J., Chen, L., Wang, H.: On power law scaling dynamics for time-fractional phase field models during coarsening. Commun. Nonlinear Sci. Numer. Simul. 70, 257–270 (2019)

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 12301508), Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education (Grant No. 2021AA02), and Jiangxi Provincial Natural Science foundation (No. 20224BCD41001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Ethical approval

This article does not contain any study with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (Grant No. 12301508) and Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education (Grant No. 2021AA02).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Hu, D., Huang, H. et al. Linearly Implicit Schemes Preserve the Maximum Bound Principle and Energy Dissipation for the Time-fractional Allen–Cahn Equation. J Sci Comput 101, 25 (2024). https://doi.org/10.1007/s10915-024-02667-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02667-2

Keywords