Skip to main content

Advertisement

Log in

The Optimal Weights of Non-local Means for Variance Stabilized Noise Removal

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Non-Local Means (NLM) algorithm is a fundamental denoising technique widely utilized in various domains of image processing. However, further research is essential to gain a comprehensive understanding of its capabilities and limitations. This includes determining the types of noise it can effectively remove, choosing an appropriate kernel, and assessing its convergence behavior. In this study, we optimize the NLM algorithm for all variations of independent and identically distributed (i.i.d.) variance-stabilized noise and conduct a thorough examination of its convergence behavior. We introduce the concept of the optimal oracle NLM, which minimizes the upper bound of pointwise \(L_{1}\) or \(L_{2}\) risk. We demonstrate that the optimal oracle weights comprise triangular kernels with point-adaptive bandwidth, contrasting with the commonly used Gaussian kernel, which has a fixed bandwidth. The computable optimal weighted NLM is derived from this oracle filter by replacing the similarity function with an estimator based on the similarity patch. We present theorems demonstrating that both the oracle filter and the computable filter achieve optimal convergence rates under minimal regularity conditions. Finally, we conduct numerical experiments to validate the performance, accuracy, and convergence of \(L_{1}\) and \(L_{2}\) risk minimization for NLM. These convergence theorems provide a theoretical foundation for further advancing the study of the NLM algorithm and its practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005). https://doi.org/10.1137/040616024

    Article  MathSciNet  Google Scholar 

  2. Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means for denoising of textural patterns. IEEE Trans. Image Process. 17(7), 1083–1092 (2008). https://doi.org/10.1109/TIP.2008.924281

    Article  MathSciNet  Google Scholar 

  3. Froment, J.: Parameter-free fast pixelwise non-local means denoising. Image Process. On Line 4, 300–326 (2014). https://doi.org/10.5201/ipol.2014.120

    Article  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.-M.: Non-local means denoising. Image Process. On Line 1, 208–212 (2011). https://doi.org/10.5201/ipol.2011.bcm_nlm

    Article  Google Scholar 

  5. Guo, J., Guo, Y., Jin, Q., Ng, M.K.-P., Wang, S.: Gaussian patch mixture model guided low-rank covariance matrix minimization for image denoising. SIAM J. Imaging Sci. 15(4), 1601–1622 (2022). https://doi.org/10.1137/21M1454262

    Article  MathSciNet  Google Scholar 

  6. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  7. Makitalo, M., Foi, A.: Optimal inversion of the generalized Anscombe transformation for Poisson–Gaussian noise. IEEE Trans. Image Process. 22(1), 91–103 (2012)

    Article  MathSciNet  Google Scholar 

  8. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2012)

    Article  MathSciNet  Google Scholar 

  9. Guo, Y., Davy, A., Facciolo, G., Morel, J.-M., Jin, Q.: Fast, nonlocal and neural: a lightweight high quality solution to image denoising. IEEE Signal Process. Lett. 28, 1515–1519 (2021)

    Article  Google Scholar 

  10. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009). https://doi.org/10.1137/070698592

    Article  MathSciNet  Google Scholar 

  11. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010). https://doi.org/10.1137/090746379

    Article  MathSciNet  Google Scholar 

  12. Jin, Y., Jiang, X., Jiang, W.: An image denoising approach based on adaptive nonlocal total variation. J. Vis. Commun. Image Represent. 65, 102661 (2019). https://doi.org/10.1016/j.jvcir.2019.102661

    Article  Google Scholar 

  13. Demircan-Tureyen, E., Kamasak, M.E.: Nonlocal adaptive direction-guided structure tensor total variation for image recovery. Signal Image Video Process. 15(7), 1517–1525 (2021). https://doi.org/10.1007/s11760-021-01884-8

    Article  Google Scholar 

  14. Liu, J., Osher, S.: Block matching local SVD operator based sparsity and TV regularization for image denoising. J. Sci. Comput. 78(1), 607–624 (2019). https://doi.org/10.1007/s10915-018-0785-8

    Article  MathSciNet  Google Scholar 

  15. Kang, M., Kang, M., Jung, M.: Total generalized variation based denoising models for ultrasound images. J. Sci. Comput. 72(1), 172–197 (2017). https://doi.org/10.1007/s10915-017-0357-3

    Article  MathSciNet  Google Scholar 

  16. Shreyamsha Kumar, B.K.: Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7(6), 1211–1227 (2013). https://doi.org/10.1007/s11760-012-0389-y

    Article  Google Scholar 

  17. Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Bayesian non local means-based speckle filtering. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1291–1294 (2008). https://doi.org/10.1109/ISBI.2008.4541240

  18. Lebrun, M., Buades, A., Morel, J.-M.: A nonlocal Bayesian image denoising algorithm. SIAM J. Imaging Sci. 6(3), 1665–1688 (2013). https://doi.org/10.1137/120874989

    Article  MathSciNet  Google Scholar 

  19. Lebrun, M., Buades, A., Morel, J.-M.: Implementation of the “non-local Bayes’’ (NL-Bayes) image denoising algorithm. Image Process. On Line 3, 1–42 (2013). https://doi.org/10.5201/ipol.2013.16

    Article  Google Scholar 

  20. Tasdizen, T.: Principal components for non-local means image denoising. In: 2008 15th IEEE International Conference on Image Processing, pp. 1728–1731 (2008). https://doi.org/10.1109/ICIP.2008.4712108

  21. Salmon, J., Harmany, Z., Deledalle, C.-A., Willett, R.: Poisson noise reduction with non-local PCA. J. Math. Imaging Vis. 48(2), 279–294 (2014). https://doi.org/10.1007/s10851-013-0435-6

    Article  MathSciNet  Google Scholar 

  22. Manjón, J.V., Coupé, P., Buades, A.: MRI noise estimation and denoising using non-local PCA. Med. Image Anal. 22(1), 35–47 (2015). https://doi.org/10.1016/j.media.2015.01.004

    Article  Google Scholar 

  23. Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12(4), 514–523 (2008). https://doi.org/10.1016/j.media.2008.02.004

    Article  Google Scholar 

  24. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008). https://doi.org/10.1109/TMI.2007.906087

    Article  Google Scholar 

  25. He, L., Greenshields, I.R.: A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans. Med. Imaging 28(2), 165–172 (2009). https://doi.org/10.1109/TMI.2008.927338

    Article  Google Scholar 

  26. Jia, Z., Jin, Q., Ng, M.K., Zhao, X.-L.: Non-local robust quaternion matrix completion for large-scale color image and video inpainting. IEEE Trans. Image Process. 31, 3868–3883 (2022)

    Article  Google Scholar 

  27. Xiong, B., Yin, Z.: A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans. Image Process. 21(4), 1663–1675 (2012). https://doi.org/10.1109/TIP.2011.2172804

    Article  MathSciNet  Google Scholar 

  28. Hu, H., Li, B., Liu, Q.: Removing mixture of Gaussian and impulse noise by patch-based weighted means. J. Sci. Comput. 67(1), 103–129 (2016). https://doi.org/10.1007/s10915-015-0073-9

    Article  MathSciNet  Google Scholar 

  29. Deledalle, C.-A., Denis, L., Tupin, F.: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009). https://doi.org/10.1109/TIP.2009.2029593

    Article  MathSciNet  Google Scholar 

  30. Kim, G., Cho, J., Kang, M.: Cauchy noise removal by weighted nuclear norm minimization. J. Sci. Comput. 83(15), 1–21 (2020). https://doi.org/10.1007/s10915-020-01203-2

    Article  MathSciNet  Google Scholar 

  31. Jiang, J., Yang, K., Yang, J., Yang, Z.-X., Chen, Y., Luo, L.: A new nonlocal means based framework for mixed noise removal. Neurocomputing 431, 57–68 (2021). https://doi.org/10.1016/j.neucom.2020.12.039

    Article  Google Scholar 

  32. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005). https://doi.org/10.1137/050622249

    Article  MathSciNet  Google Scholar 

  33. Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: European Conference on Computer Vision, pp. 57–68 (2008). https://doi.org/10.1007/978-3-540-88690-7_5

  34. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018). https://doi.org/10.1109/CVPR.2018.00813

  35. Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 593–602 (2019). https://doi.org/10.1109/ICCV.2019.00068

  36. Mei, Y., Fan, Y., Zhang, Y., Yu, J., Zhou, Y., Liu, D., Fu, Y., Huang, T.S., Shi, H.: Pyramid attention networks for image restoration. arXiv:2004.13824 (2020). https://doi.org/10.48550/arXiv.2004.13824

  37. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Process. 21(11), 4544–4556 (2012). https://doi.org/10.1109/TIP.2012.2208977

    Article  MathSciNet  Google Scholar 

  38. Iqbal, M.Z., Ghafoor, A., Siddiqui, A.M.: Satellite image resolution enhancement using dual-tree complex wavelet transform and nonlocal means. IEEE Geosci. Remote Sens. Lett. 10(3), 451–455 (2013). https://doi.org/10.1109/LGRS.2012.2208616

    Article  Google Scholar 

  39. Rousseau, F.: A non-local approach for image super-resolution using intermodality priors. Med. Image Anal. 14(4), 594–605 (2010). https://doi.org/10.1016/j.media.2010.04.005

    Article  Google Scholar 

  40. Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6(2), 595–630 (2007). https://doi.org/10.1137/060669358

    Article  MathSciNet  Google Scholar 

  41. Eskildsen, S.F., Coupé, P., Fonov, V., Manjón, J.V., Leung, K.K., Guizard, N., Wassef, S.N., Østergaard, L.R., Collins, D.L., Alzheimer’s Disease Neuroimaging Initiative: BEaSt: brain extraction based on nonlocal segmentation technique. NeuroImage 59(3), 2362–2373 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.012

    Article  Google Scholar 

  42. Juan-Albarracín, J., Fuster-Garcia, E., Juan, A., García-Gómez, J.M.: Non-local spatially varying finite mixture models for image segmentation. Stat. Comput. 31(1), 1–10 (2021). https://doi.org/10.1007/s11222-020-09988-w

    Article  MathSciNet  Google Scholar 

  43. Rousselle, F., Knaus, C., Zwicker, M.: Adaptive rendering with non-local means filtering. ACM Trans. Gr. 31(6), 1–11 (2012). https://doi.org/10.1145/2366145.2366214

    Article  Google Scholar 

  44. Zhang, X., Chan, T.F.: Wavelet inpainting by nonlocal total variation. Inverse Probl. Imaging 4(1), 191 (2010). https://doi.org/10.3934/ipi.2010.4.191

    Article  MathSciNet  Google Scholar 

  45. Li, Z., Lou, Y., Zeng, T.: Variational multiplicative noise removal by DC programming. J. Sci. Comput. 68(3), 1200–1216 (2016). https://doi.org/10.1007/s10915-016-0175-z

    Article  MathSciNet  Google Scholar 

  46. Ma, L., Xu, L., Zeng, T.: Low rank prior and total variation regularization for image deblurring. J. Sci. Comput. 70(3), 1336–1357 (2017). https://doi.org/10.1007/s10915-016-0282-x

    Article  MathSciNet  Google Scholar 

  47. Zhang, T., Chen, J., Wu, C., He, Z., Zeng, T., Jin, Q.: Edge adaptive hybrid regularization model for image deblurring. Inverse Probl. 38(6), 065010 (2022). https://doi.org/10.1088/1361-6420/ac60bf

    Article  MathSciNet  Google Scholar 

  48. Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8(1), 93–111 (2010). https://doi.org/10.4310/CMS.2010.v8.n1.a6

    Article  MathSciNet  Google Scholar 

  49. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010). https://doi.org/10.1007/s10915-009-9320-2

    Article  MathSciNet  Google Scholar 

  50. Quan, Y., Ji, H., Shen, Z.: Data-driven multi-scale non-local wavelet frame construction and image recovery. J. Sci. Comput. 63(2), 307–329 (2015). https://doi.org/10.1007/s10915-014-9893-2

    Article  MathSciNet  Google Scholar 

  51. Chen, D.-Q.: Data-driven tight frame learning scheme based on local and non-local sparsity with application to image recovery. J. Sci. Comput. 69(2), 461–486 (2016). https://doi.org/10.1007/s10915-016-0205-x

    Article  MathSciNet  Google Scholar 

  52. Jin, Q., Grama, I., Liu, Q.: A new Poisson noise filter based on weights optimization. J. Sci. Comput. 58(3), 548–573 (2014). https://doi.org/10.1007/s10915-013-9743-7

    Article  MathSciNet  Google Scholar 

  53. Jin, Q., Grama, I., Kervrann, C., Liu, Q.: Nonlocal means and optimal weights for noise removal. SIAM J. Imaging Sci. 10(4), 1878–1920 (2017). https://doi.org/10.1137/16M1080781

    Article  MathSciNet  Google Scholar 

  54. Jin, Q., Grama, I., Liu, Q.: Convergence theorems for the non-local means filter. Inverse Probl. Imaging 12(4), 853–881 (2018). https://doi.org/10.3934/ipi.2018036

    Article  MathSciNet  Google Scholar 

  55. Jin, Q., Grama, I., Liu, Q.: Poisson shot noise removal by an oracular non-local algorithm. J. Math. Imaging Vis. 63(7), 855–874 (2021). https://doi.org/10.1007/s10851-021-01033-3

    Article  MathSciNet  Google Scholar 

  56. Chaudhury, K.N., Singer, A.: Non-local Euclidean medians. IEEE Signal Process. Lett. 19(11), 745–748 (2012). https://doi.org/10.1109/LSP.2012.2217329

    Article  Google Scholar 

  57. Maleki, A., Narayan, M., Baraniuk, R.G.: Anisotropic nonlocal means denoising. Appl. Comput. Harmonic Anal. 35(3), 452–482 (2013). https://doi.org/10.1016/j.acha.2012.11.003

    Article  MathSciNet  Google Scholar 

  58. Deledalle, C.-A., Duval, V., Salmon, J.: Non-local methods with shape-adaptive patches (NLM-SAP). J. Math. Imaging Vis. 43(2), 103–120 (2012). https://doi.org/10.1007/s10851-011-0294-y

    Article  MathSciNet  Google Scholar 

  59. Li, X., Zhou, Y., Zhang, J., Wang, L.: Multipatch unbiased distance non-local adaptive means with wavelet shrinkage. IEEE Trans. Image Process. 29, 157–169 (2020). https://doi.org/10.1109/TIP.2019.2928644

    Article  MathSciNet  Google Scholar 

  60. Chatterjee, P., Milanfar, P.: Patch-based near-optimal image denoising. IEEE Trans. Image Process. 21(4), 1635–1649 (2012). https://doi.org/10.1109/TIP.2011.2172799

    Article  MathSciNet  Google Scholar 

  61. Frosio, I., Kautz, J.: Statistical nearest neighbors for image denoising. IEEE Trans. Image Process. 28(2), 723–738 (2019). https://doi.org/10.1109/TIP.2018.2869685

    Article  MathSciNet  Google Scholar 

  62. Kervrann, C., Boulanger, J.: Local adaptivity to variable smoothness for exemplar-based image regularization and representation. Int. J. Comput. Vis. 79(1), 45–69 (2008). https://doi.org/10.1007/s11263-007-0096-2

    Article  Google Scholar 

  63. Salmon, J., Strozecki, Y.: Patch reprojections for non-local methods. Signal Process. 92(2), 477–489 (2012). https://doi.org/10.1016/j.sigpro.2011.08.011

    Article  Google Scholar 

  64. Van De Ville, D., Kocher, M.: Sure-based non-local means. IEEE Signal Process. Lett. 16(11), 973–976 (2009). https://doi.org/10.1109/LSP.2009.2027669

    Article  Google Scholar 

  65. Liu, X., Deng, W.: Higher order approximation for stochastic space fractional wave equation forced by an additive space-time Gaussian noise. J. Sci. Comput. 87(11), 1–29 (2021). https://doi.org/10.1007/s10915-021-01415-0

    Article  MathSciNet  Google Scholar 

  66. Duval, V., Aujol, J.-F., Gousseau, Y.: A bias-variance approach for the nonlocal means. SIAM J. Imaging Sci. 4(2), 760–788 (2011). https://doi.org/10.1137/100790902

    Article  MathSciNet  Google Scholar 

  67. Salmon, J.: On two parameters for denoising with non-local means. IEEE Signal Process. Lett. 17(3), 269–272 (2010). https://doi.org/10.1109/LSP.2009.2038954

    Article  Google Scholar 

  68. Wu, Y., Tracey, B., Natarajan, P., Noonan, J.P.: James-stein type center pixel weights for non-local means image denoising. IEEE Signal Process. Lett. 20(4), 411–414 (2013). https://doi.org/10.1109/LSP.2013.2247755

    Article  Google Scholar 

  69. Nguyen, M.P., Chun, S.Y.: Bounded self-weights estimation method for non-local means image denoising using minimax estimators. IEEE Trans. Image Process. 26(4), 1637–1649 (2017). https://doi.org/10.1109/TIP.2017.2658941

    Article  MathSciNet  Google Scholar 

  70. Anscombe, F.J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254 (1948). https://doi.org/10.1093/biomet/35.3-4.246

    Article  MathSciNet  Google Scholar 

  71. Zhang, B., Fadili, J.M., Starck, J.-L.: Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Trans. Image Process. 17(7), 1093–1108 (2008)

    Article  MathSciNet  Google Scholar 

  72. Azzari, L., Foi, A.: Variance stabilization for noisy + estimate combination in iterative Poisson denoising. IEEE Signal Process. Lett. 23(8), 1086–1090 (2016)

    Article  Google Scholar 

  73. Hai, N.H., Thanh, D.N., Hien, N.N., Premachandra, C., Prasath, V.S.: A fast denoising algorithm for x-ray images with variance stabilizing transform. In: 2019 11th International Conference on Knowledge and Systems Engineering (KSE), pp. 1–5. IEEE (2019). https://ieeexplore.ieee.org/abstract/document/8919364

  74. Foi, A.: Noise estimation and removal in MR imaging: the variance-stabilization approach. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1809–1814. IEEE (2011). https://ieeexplore.ieee.org/abstract/document/5872758

  75. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley, New York (1971)

    Google Scholar 

  76. Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications. Routledge, New York (1996). https://doi.org/10.1201/9780203748725

    Book  Google Scholar 

  77. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017). https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  Google Scholar 

  78. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  79. Makitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 20(1), 99–109 (2011). https://doi.org/10.1109/TIP.2010.2056693

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Jean-Michel Morel for helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (No. 12061052), Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No. NJYT22090), Natural Science Foundation of Inner Mongolia Autonomous Region (Nos. 2024LHMS01006, 2024MS01002), Innovative Research Team in Universities of Inner Mongolia Autonomous Region (No. NMGIRT2207), “111 project” of higher education talent training in Inner Mongolia Autonomous Region, Inner Mongolia University Independent Research Project (No. 2022-ZZ004), Inner Mongolia University Postgraduate Research and Innovation Programmes (No. 11200-5223737), Inner Mongolia Science and Technology Achievement Transfer and Transformation Demonstration Zone, University Collaborative Innovation Base, and University Entrepreneurship Training Base” Construction Project (Supercomputing Power Project) (No. 21300-231510) and the network information center of Inner Mongolia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Proofs of the Main Results

Appendix. Proofs of the Main Results

1.1 The Proof of Theorem 1

Because the objective function \({\mathcal {J}}_{k,\phi }(\omega )\) defined by (12) is continuously differentiable, and both the equality constraint \(\sum _{x\in {\mathcal {N}}_{x_{0},D}}\omega (x)=1\) and inequality constraints \(\omega (x)\ge 0, x \in {\mathcal {N}}_{x_{0},D}\) are differentiable, we consider the Lagrange function:

$$\begin{aligned} {\mathcal {L}} (\omega ,a(x_{0}),g) = {\mathcal {J}}_{k,\phi }(\omega ) -k a(x_{0})\left( \sum _{x\in {\mathcal {N}}_{x_{0},D}}\omega (x)-1 \right) -k\sum _{x\in {\mathcal {N}}_{x_{0},D}}g(x)\omega (x), \end{aligned}$$

where \(k=1,2\), \(\omega , g \in {\mathbb {R}}^{M}\) are vectors whose components are \(\omega (x)\), \(x \in {\mathcal {N}}_{x_{0},D}\), and g(x), \(x \in {\mathcal {N}}_{x_{0},D}\). Moreover, g(x) and \(a(x_{0}) \in {\mathbb {R}}\) are Lagrange multipliers corresponding to inequality and equality constraints, respectively. Let \(\omega ^{*}\) be the optimal solution to the minimization problem (13).

For the case \(k=2\), a similar proof can be found in [53]. In this paper, we only demonstrate the case \(k=1\). To find the solution \((\omega ^*, a(x_{0}), g)\) for the optimization problems mentioned above, the Karush-Kuhn-Tucker conditions must be satisfied. Specifically, the solution should satisfy the following equation, where

$$\begin{aligned} S(x_{0}) =\sqrt{\sum _{x\in {\mathcal {N}}_{x_{0},D}}{\omega ^{*}}^{2}(x)}, \end{aligned}$$
(A.1)

and we have the following equations:

$$\begin{aligned} \frac{{\partial {\mathcal {L}}}}{{\partial \omega (x)}}\bigg |_{\omega =\omega ^{*}}&= \phi (x,{x_0}) + \sqrt{\frac{2}{\pi }}\sigma \frac{{\omega ^{*}(x)}}{S(x_{0}) } - a(x_{0}) - g(x) = 0, \end{aligned}$$
(A.2)
$$\begin{aligned} \frac{{\partial {\mathcal {L}}}}{{\partial a(x_{0}) }}\bigg |_{\omega =\omega ^{*}}&= -\left( {\sum _{x \in {\mathcal {N}}_{x_{0},D}}\omega ^{*} (x) - 1} \right) = 0,\end{aligned}$$
(A.3)
$$\begin{aligned} \frac{{\partial {\mathcal {L}}}}{{\partial g(x)}}\bigg |_{\omega =\omega ^{*}}&= -\omega ^{*}(x)\left\{ \begin{array}{ll} = 0, & \quad if \ g(x) > 0,\\ \le 0, & \quad if \ g(x) = 0. \end{array} \right. \end{aligned}$$
(A.4)

First, we prove that the weight expression (14) holds, where \(a(x_{0})\) satisfies (15). From (A.4), if \(g(x)=0\), then \(\omega ^{*}(x)\ge 0\), and substitute them into Eq. (A.2), we get

$$\begin{aligned} \omega ^{*}(x) = \frac{\sqrt{\frac{\pi }{2}}S(x_{0}) (a(x_{0})-\phi (x,x_{0}))}{\sigma } \ge 0, \end{aligned}$$

It is known that \(\sigma > 0\) and \(S(x_{0}) \ge 0\), so \(a(x_{0})-\phi (x,x_{0})\ge 0\) in this case. If \(g(x)>0\), we get \(\omega ^{*}(x) = 0\) from (A.4). Similarly, substituting them into (A.2), we get

$$\begin{aligned} a(x_{0})-\phi (x,x_{0})=-g(x) < 0. \end{aligned}$$

Thus

$$\begin{aligned} \omega ^{*}(x)= \frac{\sqrt{\frac{\pi }{2}}S(x_{0}) \left[ a(x_{0})-\phi (x,x_{0}) \right] _{+}}{\sigma }. \end{aligned}$$
(A.5)

Then, from the equality constraint and expression (A.5), we know that

$$\begin{aligned} \sum _{x\in {\mathcal {N}}_{x_{0},D}}\frac{\sqrt{\frac{\pi }{2}}S(x_{0}) \left[ a(x_{0})-\phi (x,x_{0}) \right] _{+}}{\sigma } = 1, \end{aligned}$$
(A.6)

thereby \(\sum _{x\in {\mathcal {N}}_{x_{0},D}}\sqrt{\frac{\pi }{2}}S(x_{0}) \left[ a(x_{0})-\phi (x,x_{0}) \right] _{+} = \sigma \), and substitute it into (A.6), we get

$$\begin{aligned} \omega ^{*}(x) = \frac{\left[ a(x_{0})-\phi (x,x_{0}) \right] _{+}}{\sum _{x\in {\mathcal {N}}_{x_{0},D}}\left[ a(x_{0})-\phi (x,x_{0}) \right] _{+}}. \end{aligned}$$
(A.7)

In addition, by substituting (A.5) into (A.3), we get

$$\begin{aligned} \left( \sum _{x\in {\mathcal {N}}_{x_{0},D}} \left[ a(x_{0})-\phi (x,x_{0}) \right] _{+} \right) ^{2}= \frac{2\sigma ^{2}}{\pi \sum _{x\in {\mathcal {N}}_{x_{0},D}}\omega ^{*}(x)^{2}}, \end{aligned}$$

and combining (A.7), we get the following equation

$$\begin{aligned} \sum _{x\in {\mathcal {N}}_{x_{0},D}}\left( \left[ a(x_{0})-\phi (x,x_{0}) \right] _{+} \right) ^{2} = \frac{2\sigma ^{2}}{\pi }. \end{aligned}$$
(A.8)

Therefore, the relation (14) is proved, and \(a(x_{0})\) satisfies Eq. (A.8).

Next, we prove that \(a(x_{0})\) is the unique solution of Eq. (A.8) and prove the uniqueness of the weights \(\omega ^{*}(x)\). We define the function

$$\begin{aligned} {\mathcal {H}}(a(x_{0}))= \sum _{x\in {\mathcal {N}}_{x_{0},D}}\left( \left[ a(x_{0})-\phi (x,x_{0}) \right] _{+} \right) ^{2}, \end{aligned}$$

which is strictly increasing and continuous on \(\left[ 0,+\infty \right) \). Further, we have \({\mathcal {H}}(0)= 0\) and \(\lim \nolimits _{a(\! x_ {0}\! )\rightarrow +\! \infty }\) \({\mathcal {H}}(a(x_{0}))= +\infty \). So there exists a unique solution on \(\left( 0,+\infty \right) \) of the equation \({\mathcal {H}}(a(x_{0}))= \frac{2\sigma ^{2}}{\pi }\). Moreover, according to the uniqueness of \(a(x_{0})\) and (A.8) the weights \(\omega ^* (x),\ x\in {{\mathcal {N}}_{x_{0},D}}\) are also uniquely determined by \(\phi (x,x_{0}),\) \( x\in {{\mathcal {N}}_{x_{0},D}}\).

1.2 The Proof of Theorem 2

Proof

The theorem with \(k=2\) is similar to that in [53]. In this paper, we only demonstrate the theorem in the case \(k=1\).

In order to solve the problem (17) with \(k=1\), we introduce a series of auxiliary functions \({\mathcal {H}}_{j}(a(x_{0}))\), \(j=0,1,\ldots ,M-1\) defined as follow

$$\begin{aligned} {\mathcal {H}}_{j}(a(x_{0}))= \sum _{i=0}^{j} \left( \left[ a(x_{0})- \phi (x_{i},x_{0}) \right] _{+} \right) ^{2}= \frac{2\sigma ^{2}}{\pi }. \end{aligned}$$
(A.9)

Let \(a_{1,j}(x_{0})\), \(j=0,1,\ldots ,M-1\) be the solution of \({\mathcal {H}}_{j}(a(x_{0}))\) respectively. Obviously, \({\mathcal {H}}_{M-1}(a(x_{0}))\) is equal to \({\mathcal {H}}(a(x_{0}))\). For convenience, denote \(\phi (x_{M},x_{0})=+ \infty \).

Since function \({\mathcal {H}}(a(x_{0}))\) is strictly increasing on \(\left( 0,+ \infty \right) \) with \({\mathcal {H}}(0)=0\) and \({\mathcal {H}}(+\infty )=+\infty \), Eq. (17) admits a unique solution \(a(x_{0})\) on \(\left( 0,+ \infty \right) \), which must be located in some interval \( [ \phi (x_{{\overline{\jmath }}},x_{0}),\) \(\phi (x_{{\overline{\jmath }}+1},x_{0}) )\), where \(0\le {\overline{\jmath }} \le M-1\). Hence (17) with \(k=1\) becomes

$$\begin{aligned} {\mathcal {H}}(a(x_{0}))=\sum _{i=0}^{{\overline{\jmath }}} \left( a(x_{0})- \phi (x_{i},x_{0}) \right) ^{2}= \frac{2\sigma ^{2}}{\pi }, \end{aligned}$$

where \( \phi (x_{{\overline{\jmath }}},x_{0})\le a_{1,{\overline{\jmath }}}(x_{0})<\phi (x_{{\overline{\jmath }}+1},x_{0}) \).

According to Eq. (A.9), it is easy to find that the function \({\mathcal {H}}_{j}(a(x_{0}))\) continuous and strictly increasing on \(\left( 0,+ \infty \right) \) with \({\mathcal {H}}_{j}(0)=0\) and \({\mathcal {H}}_{j}(+ \infty )=+ \infty \). Therefore, there is an unique solution \(a_{1,j}(x_{0})\) of (A.9) in \(\left( 0,+ \infty \right) \) for each j. We first demonstrate that \(a_{1,j}(x_{0})\) is decreasing monotonically with respect to j, i.e. \(a_{1,j}(x_{0})\ge a_{1,j+1}(x_{0})\). \(i=0,1,\ldots , M-1\). The hypothesis \(a_{1,j+1} (x_{0})> a_{1,j}(x_{0}),j=0,1,\ldots ,M-1\) leads to

$$\begin{aligned} \begin{aligned} \sum \limits _{i=0}^{j+1} \! \left( \left[ a_{1,j+1}(x_{0})\! - \!\phi (x_{i},x_{0}) \right] _{+} \right) ^{2}&\ge \sum \limits _{i=0}^{j} \! \left( \left[ a_{1,j+1}(x_{0})\! - \!\phi (x_{i},x_{0}) \right] _{+} \right) ^{2} \\&= {a_{1,j+1}}^{2}(x_{0}) \! + \! \sum \limits _{i=1}^{j} \! \left( \left[ a_{1,j+1}(x_{0})\! - \!\phi (x_{i},x_{0}) \right] _{+} \right) ^{2} \\&> {a_{1,j}}^{2}(x_{0}) \! + \! \sum \limits _{i=1}^{j} \! \left( \left[ a_{1,j}(x_{0})\! - \!\phi (x_{i},x_{0}) \right] _{+} \right) ^{2} \\&= \sum \limits _{i=0}^{j} \! \left( \left[ a_{1,j}(x_{0})\! - \!\phi (x_{i},x_{0}) \right] _{+} \right) ^{2}\\&= \frac{2{\sigma }^{2}}{\pi }. \end{aligned} \end{aligned}$$

But \( \sum \nolimits _{i=0}^{j+1} \! \left( \left[ a_{1,j+1}(x_{0})\! - \!\phi (x_{i},x_{0}) \right] _{+} \right) ^{2} =\frac{2{\sigma }^{2}}{\pi }\), so the hypothesis is not true, i.e.\(a_{1,j}(x_{0})\) is decreasing monotonically with respect to j.

We then prove the theorem. When \(j=0\), \( a^2_{1,0}(x_{0}) = \frac{2{\sigma }^{2}}{\pi }\), i.e. \(a_{1,0}(x_{0}) = \sqrt{\frac{2}{\pi }}\sigma >0=\phi (x_{0},x_{0})\). \(a_{1,M}(x_{0})\le a_{1,0}(x_{0})<\phi (x_{M},x_{0})=+\infty \) due to \(a_{1,j}(x_{0})\) is decreasing monotonically and with respect to j. Obviously, there exists \(j^{*}\) that \(j^{*}=\max \{j|\phi (x_{j},x_{0})\le a_{1,j}(x_{0})\}\), \(0< j^{*} \le M-1\).

We now prove that \({\overline{\jmath }}=j^*\). It is sufficient to prove that \( a_{1,j}(x_{0})< \phi (x_{j},x_{0})\) if \({\overline{\jmath }}<j\le M-1\). Since \(a_{1,j}(x_{0})\) is decreasing monotonically and \(\phi (x_{j},x_{0})\) is monotonically increasing respect to j, for \(j>{\overline{\jmath }}\) we have

$$\begin{aligned} a_{1,j}(x_{0})\le a_{1,{\overline{\jmath }}}(x_{0}) <\phi (x_{{\overline{\jmath }}+1},x_{0})\le \phi (x_{j},x_{0}). \end{aligned}$$
(A.10)

We finally show that if \(0\le j < M-1\) and \(a_{1,j}(x_{0})<\phi (x_{j},x_{0})\), so that \(j^* = \max \{j|a_{1,j}(x_{0})\ge \phi (x_{j},x_{0})\}\) is the unique integer \(j\in \{1,2,\cdots ,M-1\}\) such that \(a_{1,j}(x_{0})\ge \phi (x_{j},x_{0})\) and \(a_{1,j+1}(x_{0})< \phi (x_{j+1},x_{0})\) if \(0\le j<M-1\). According to \(a_{1,j}(x_{0})\) is decreasing monotonically and \(\phi (x_{j},x_{0})\) is monotonically increasing respect to j, the inequality \(a_{1,j}(x_{0})< \phi (x_{j},x_{0})\) leads to

$$\begin{aligned} a_{1,j+1} (x_{0})\le a_{1,j}(x_{0})< \phi (x_{j},x_{0}) \le \phi (x_{j+1},x_{0}). \end{aligned}$$

\(\square \)

1.3 The Proof of Theorem 3

We first prove the Eq. (28) holds for \(x_{0}\in {\Omega }\). The objective function \({\mathcal {J}}_{k,\phi }(\omega ) \) is known to be defined by (12) and the optimal weights \(\omega \) is defined by (14), where \(\phi (x,x_{0}) = \left| u(x)-u(x_{0}) \right| \). According to the Hölder condition (26) we know that for any \(\omega \), we get

$$\begin{aligned} {\mathcal {J}}_{k,\phi }(\omega )\le \tilde{{\mathcal {J}}}_{k,\phi }(\omega ), \end{aligned}$$
(A.11)

where

$$\begin{aligned} \tilde{{\mathcal {J}}}_{k,\phi }(\omega )=\left( \sum _{x\in {\mathcal {N}}_{x_{0},D}}\omega (x)L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) ^{k}+ \theta {\sigma ^k}\left( {\sum _{x\in {\mathcal {N}}_{x_{0},D}}\omega ^{2} (x)}\right) ^{\frac{k}{2}}, \end{aligned}$$
(A.12)

where \(\theta =\sqrt{\frac{2}{\pi }}\) when \(k=1\), and \(\theta =1\) when \(k=2\). From Theorem 1,

$$\begin{aligned} {\tilde{\omega }}(x)=\frac{\left[ {\tilde{a}}(x_{0}) - L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\right] _{+}}{\sum _{x\in {\mathcal {N}}_{x_{0},D}}\left[ {\tilde{a}}(x_{0}) - L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\right] _{+}}, \end{aligned}$$
(A.13)

where \({\tilde{a}}(x_{0})> 0\) is the unique solution on \(\left( 0, +\infty \right) \) to the equation

$$\begin{aligned} \tilde{{\mathcal {H}}}_{h}(z):= \left\{ \begin{aligned}&\sum _{x\in {\mathcal {N}}_{x_{0},D}} \left( \left[ z - L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\right] _{+}\right) ^{2}= \frac{2\sigma ^{2}}{\pi }, \quad k=1;\\&\sum _{x\in {\mathcal {N}}_{x_{0},D}} {L}\left\| x-x_{0} \right\| ^{\beta }_{\infty } \left[ z - L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\right] _{+} =\sigma ^{2}, \quad k=2, \end{aligned} \right. \end{aligned}$$
(A.14)

where \(z\ge 0\).

Lemma 1

Suppose that \(c_{1} n^{-\alpha }\le h\le 1\), where \( 0\le \alpha \le \frac{1}{2\beta +2}\) and \(c_{1}> 0\) if \(0 \le \alpha < \frac{1}{2\beta +2}\), \(c_{1}> c_{0} = \left( \frac{\sigma ^{2}(2\beta +2)(\beta + 2)}{R L^{2}} \right) ^{\frac{1}{2\beta + 2}}\) if \(\alpha = \frac{1}{2\beta +2}\). Then

$$\begin{aligned} {\tilde{a}}(x_{0})=c_{2} n^{-\frac{\beta }{2\beta +2}}(1+o(1)), \end{aligned}$$
(A.15)

and

$$\begin{aligned} \tilde{{\mathcal {J}}}_{k,\phi }({\tilde{\omega }})\le c_{3} n^{-\frac{k\beta }{2\beta +2}}, \end{aligned}$$
(A.16)

where \(k=1,2\). \(R=4\pi \beta ^2\) when \(k=1\), and \(R=8\beta \) when \(k=2\). o(1) denotes an infinite small quantity and \(c_{2}\), \(c_{3}\) are positive constants that depend only on \(\beta \), L and \(\sigma \).

Proof

We first prove that (A.15) holds when \(h = 1\) (that is, \({\mathcal {N}}_{x_{0},D} = {\Omega } \)). According to the definition of \({\tilde{a}}(x_{0})\) (see (A.14)), we have

$$\begin{aligned} \tilde{{\mathcal {H}}}_{1}({\tilde{a}}(x_{0})) =\left\{ \begin{aligned}&\sum _{x\in {\Omega } }\left( \left[ {\tilde{a}}(x_{0}) - L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\right] _{+} \right) ^{2}= \frac{2\sigma ^{2}}{\pi },\quad k=1;\\&\sum _{x\in {\Omega } } L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\left[ {\tilde{a}}(x_{0}) - L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\right] _{+}=\sigma ^{2},\quad k=2, \end{aligned} \right. \end{aligned}$$
(A.17)

Let \({\tilde{h}}=\left( \frac{{\tilde{a}}(x_{0})}{L} \right) ^{\frac{1}{\beta }}\), then \({\tilde{a}}(x_{0})= L{\tilde{h}}^{\beta }\), where by we get

$$\begin{aligned} \left[ {\tilde{a}}(x_{0}) - L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\right] _{+}= 0,\ \text {iff} \ \left\| x-x_{0} \right\| _{\infty }> {\tilde{h}}. \end{aligned}$$
(A.18)

According to (A.18) and \({\tilde{a}}(x_{0})= L{\tilde{h}}^{\beta }\), (A.17) becomes

$$\begin{aligned} \tilde{{\mathcal {H}}}_{{\tilde{h}}}({\tilde{a}}(x_{0})):=\left\{ \begin{aligned}&L^{2} \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left( {\tilde{h}}^{\beta } - \left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) ^{2} = \frac{2\sigma ^{2}}{\pi },\quad \quad \quad \quad \quad \quad k=1;\\&L^{2} \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left( {\tilde{h}}^{\beta } - \left\| x-x_{0} \right\| ^{\beta }_{\infty } - \left\| x-x_{0} \right\| ^{2\beta }_{\infty } \right) =\sigma ^{2},\quad k=2. \end{aligned} \right. \end{aligned}$$
(A.19)

By the definition of the neighbourhood \({\mathcal {N}}_{x_{0},{\tilde{D}}}\) with \( {\tilde{h}}=\frac{{\tilde{D}}-1}{2N}\), we easily know that

$$\begin{aligned} \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left\| x-x_{0} \right\| ^{\beta }_{\infty } = 8\sum _{i=1}^{N{\tilde{h}}}i\left( \frac{i}{N}\right) ^{\beta } = \frac{8N^{2}{\tilde{h}}^{\beta +2}}{\beta +2}(1+o(1)), \end{aligned}$$
(A.20)

where o(1) denotes an infinitely small quantity, this formula also applies to the case where \(2\beta \) is used instead of \(\beta \), so

$$\begin{aligned} \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left\| x-x_{0} \right\| ^{2 \beta }_{\infty }= \frac{8N^{2}{\tilde{h}}^{2\beta +2}}{2 \beta +2}(1+o(1)). \end{aligned}$$
(A.21)

Thus, (A.19) implies

$$\begin{aligned} \tilde{{\mathcal {H}}}_{{\tilde{h}}}({\tilde{a}}(x_{0}))=\left\{ \begin{aligned}&\frac{8L^{2}\beta ^{2}}{(2 \beta +2)(\beta +2)}N^{2}{\tilde{h}}^{2\beta +2}\left( 1+o(1) \right) = \frac{2\sigma ^{2}}{\pi },\quad k=1;\\&\frac{8L^{2}\beta }{(2 \beta +2)(\beta +2)}N^{2}{\tilde{h}}^{2\beta +2}\left( 1+o(1) \right) = \sigma ^{2},\quad k=2, \end{aligned} \right. \end{aligned}$$
(A.22)

from which we infer that

$$\begin{aligned} {\tilde{h}}= c_{0}n^{-\frac{1}{2\beta +2}}(1+o(1)), \end{aligned}$$
(A.23)

where

$$\begin{aligned} c_{0}= \left\{ \begin{aligned}&\left( \frac{\sigma ^{2}(2\beta +2)(\beta +2)}{4\pi L^{2}\beta ^{2}} \right) ^{\frac{1}{2\beta +2}},\quad k=1;\\&\left( \frac{\sigma ^{2}(2\beta +2)(\beta +2)}{8 L^{2}\beta } \right) ^{\frac{1}{2\beta +2}},\quad k=2. \end{aligned} \right. \end{aligned}$$

By (A.23) and the definition of \({\tilde{h}}\), we get

$$\begin{aligned} {\tilde{a}}(x_{0})=L{\tilde{h}}^{\beta }= L c_{0}^{\beta }n^{-\frac{\beta }{2\beta +2}}(1+o(1))= c_{2}n^{-\frac{\beta }{2\beta +2}}(1+o(1)), \end{aligned}$$

which proves (A.15) in the case when \(h = 1\).

We now prove (A.15) for \(c_{1} n^{-\alpha }\le h< 1\), where \( 0\le \alpha \le \frac{1}{2\beta +2}\) and \(c_{1}> 0\) if \(0 \le \alpha < \frac{1}{2\beta +2}\), \(c_{1}> c_{0}\) if \(\alpha = \frac{1}{2\beta +2}\). It is easy to know that \(h\ge {\tilde{h}}= c_{0}n^{-\frac{1 }{2\beta +2}}(1+o(1))\) for n to be large enough. Using again (A.18), we see that

$$\begin{aligned} \tilde{{\mathcal {H}}}_{1}({\tilde{a}}(x_{0}))= \tilde{{\mathcal {H}}}_{h}({\tilde{a}}(x_{0}))= \tilde{{\mathcal {H}}}_{{\tilde{h}}}({\tilde{a}}(x_{0})), \end{aligned}$$

from this formula it follows that if h satisfies \(c_{1}n^{-\alpha }\le h <1\), then \({\tilde{a}}(x_{0})= c_{2}n^{-\frac{\beta }{2\beta +2}}(1+o(1))\) is also the solution of the Eq. (A.14). This completes the proof of (A.15).

The case \(k=2\) is the same to [53], in this paper, we only prove the case \(k=1\).

By substituting (A.13) in (A.12) and using the equivalence (A.19), we get

$$\begin{aligned} \tilde{{\mathcal {J}}}_{k,\phi }({\tilde{\omega }})&= \frac{\sqrt{\pi } \sum \limits _{\left\| x-x_{0} \right\| _{\infty }\le h}\left[ {\tilde{a}}(x_{0})\! - L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \! \right] _{+}\! L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\! + \! \sigma \sqrt{\! 2\tilde{{\mathcal {H}}}_{h}({\tilde{a}}(\! x_{0}\! ))}}{\sqrt{\pi }\sum \limits _{\left\| x-x_{0} \right\| _{\infty }\le h}\left[ {\tilde{a}}(x_{0}) - L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \right] _{+}} \nonumber \\&=\frac{\sqrt{\pi } \sum \limits _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left( {\tilde{a}}(x_{0})\! - L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \! \right) \! L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\! + \! \sigma \sqrt{\! 2\tilde{{\mathcal {H}}}_{{\tilde{h}}}({\tilde{a}}(\! x_{0}\! ))}}{\sqrt{\pi }\sum \limits _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left( {\tilde{a}}(x_{0}) - L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) } \nonumber \\&=\frac{\pi \sum \limits _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left( {\tilde{a}}(x_{0})\! - L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \! \right) \! L\left\| x-x_{0} \right\| ^{\beta }_{\infty }\! + 2\sigma ^{2}}{\pi \sum \limits _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left( {\tilde{a}}(x_{0}) - L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) } \nonumber \\&=\frac{\pi L^{2}P_{{\tilde{h}}}+ 2\sigma ^{2}}{\pi LQ_{{\tilde{h}}}}, \end{aligned}$$
(A.24)

where

$$\begin{aligned} P_{{\tilde{h}}}= & \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left( {\tilde{h}}^{\beta } - \left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) \left\| x-x_{0} \right\| ^{\beta }_{\infty },\\ Q_{{\tilde{h}}}= & \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\left( {\tilde{h}}^{\beta } - \left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) , \end{aligned}$$

and the last equality holds from the fact that \({\tilde{a}}(x_{0})=L{\tilde{h}}^{\beta }\). Since

$$\begin{aligned} \begin{aligned} -L^{2}P_{{\tilde{h}}}&= \! \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\! \left( L{\tilde{h}}^{\beta }\! - \! L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) ^{2}+ L^{2}{\tilde{h}}^{\beta }\! \! \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\! \left( \left\| x-x_{0} \right\| ^{\beta }_{\infty }\! - \! {\tilde{h}}^{\beta } \right) \\&=\! \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\! \left( {\tilde{a}}(\! x_{0}\! )\! - \! L\left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) ^{2}\! - \! L^{2}{\tilde{h}}^{\beta }\! \! \sum _{\left\| x-x_{0} \right\| _{\infty }\le {\tilde{h}}}\! \left( {\tilde{h}}^{\beta }\! - \! \left\| x-x_{0} \right\| ^{\beta }_{\infty } \right) \\&=\frac{2\sigma ^{2}}{\pi }-L^{2}{\tilde{h}}^{\beta }Q_{{\tilde{h}}}, \end{aligned} \end{aligned}$$

where the last equality is obtained by using (A.19), we have \(\pi L^{2}P_{{\tilde{h}}}= \pi L^{2}{\tilde{h}}^{\beta }Q_{{\tilde{h}}}- 2\sigma ^{2}\). Substituting to (A.24) and using (A.23), we obtain

$$\begin{aligned} \tilde{{\mathcal {J}}}_{k,\phi }({\tilde{\omega }})= L{\tilde{h}}^{\beta }= Lc_{0}^{\beta }n^{-\frac{\beta }{2\beta +2}}\left( 1+o(1) \right) = c_{3}n^{-\frac{\beta }{2\beta +2}}\left( 1+o(1) \right) , \end{aligned}$$

where \(c_{3}=Lc_0^\beta \) and depends on \(\beta \), L, and \(\sigma \). \(\square \)

See from (11), because \(\sum _{x\in {\mathcal {N}}_{x_{0},D}}\omega (x)\varepsilon (x) \sim N(0, {\sigma }^2\sum _{x\in {\mathcal {N}}_{x_{0},D}} {\omega ^2(x)})\) when \(D\rightarrow +\infty \), we have \(\delta ^{E}_{n}= O(n^{-\frac{\beta }{2\beta +2}})\) for sufficiently large D. It is easy to get

$$\begin{aligned} {\mathbb {E}}\left| {\hat{u}}(x_{0})-u(x_{0}) \right| \le {\mathcal {J}}_{1,\phi }(\omega ) + O(n^{-\frac{\beta }{2\beta +2}}). \end{aligned}$$

Hence, Lemma 1, (A.11) and (12) indicate that the Eq. (28) holds for \(k=1\) and \(x_{0}\in {\Omega }\), while Lemma 1, (A.11) and (10) imply that the Eq. (28) holds for \(k=2\) and \(x_{0}\in {\Omega }\).

We finally prove that the Eq. (28) holds for all the points on \({\Omega }_{0}\).

Let \(x_{0}\in {\Omega }_{0}\), we have \(x'_{0} = (x'_{0,1},x'_{0,2})= \left( \frac{[N x_{0,1}]}{N},\frac{[N x_{0,2}]}{N}\right) \in {\Omega }\) and \({\hat{u}}_{k,D}^{*}(x_{0}) = {\hat{u}}_{k,D}^{*}(x'_{0})\), \(k=1\) and 2. The local Hölder condition (26) implies that

$$\begin{aligned} {\mathbb {E}}\left| {\hat{u}}_{k,D}^{*}(x_{0})-u(x_{0}) \right| ^{k}= & {\mathbb {E}}\left| {\hat{u}}_{k,D}^{*}(x'_{0})-u(x_{0}) \right| ^{k}\\= & {\mathbb {E}}\left| {\hat{u}}_{k,D}^{*}(x'_{0})-u(x'_{0})+u(x'_{0})-u(x_{0}) \right| ^{k}\\\le & k({\mathbb {E}}\left| {\hat{u}}_{k,D}^{*}(x'_{0})-u(x'_{0}) \right| ^{k}+ \left| u(x'_{0})-u(x_{0}) \right| ^{k})\\= & k(O(n^{-\frac{k\beta }{2\beta + 2}}))+ k\left( L(\sqrt{2}n^{-2})^{\beta }\right) ^{k}\\= & O(n^{-\frac{k\beta }{2\beta + 2}}). \end{aligned}$$

For inequalities, when \(k=1\), the absolute value inequality clearly holds. When \(k=2\), it can be obtained from the Cauchy-Schwartz inequality. Then for all point \(x_{0}\in {\Omega }_{0}\), the Eq. (28) holds.

1.4 The Proof of Theorem 4

From the condition \(\phi (x,x_{0})\le \alpha \left| u(x)- u(x_{0}) \right| + \varepsilon _{n}\), where \(\alpha > 0\) is a constant, and \(\varepsilon _{n}(x)= O(n^{-\frac{\beta }{2\beta + 2}})\), we know that

$$\begin{aligned} \begin{aligned} \left( \sum _{x\in {{\mathcal {N}}_{x_{0},D}}}\omega (x)\phi (x,x_{0}) \right) ^{k}\!\le \! \left( \sum _{x\in {{\mathcal {N}}_{x_{0},D}}}\omega (x)\left( \alpha \left| u(x)- u(x_{0}) \right| + \varepsilon _{n} \right) \right) ^{k}, \end{aligned} \end{aligned}$$

where \(k=1,2\). In the case of \(k=1\),

$$\begin{aligned} \begin{aligned} \sum _{x\in {{\mathcal {N}}_{x_{0},D}}}\omega (x)\left( \alpha \left| u(x)- u(x_{0}) \right| + \varepsilon _{n} \right)&= \alpha \!\sum _{x\in {{\mathcal {N}}_{x_{0},D}}}\omega (x)\left| u(x)- u(x_{0}) \right| + \sum _{x\in {{\mathcal {N}}_{x_{0},D}}}\omega (x)\varepsilon _{n}\\&\le \alpha \!\sum _{x\in {{\mathcal {N}}_{x_{0},D}}}\omega (x)\left| u(x)- u(x_{0}) \right| + O(n^{-\frac{\beta }{2\beta + 2}}). \end{aligned} \end{aligned}$$

In the case of \(k=2\), as \((a+b)^2 \le 2a^2+2b^2\), the solution of the above equation is

$$\begin{aligned} \begin{aligned} \left( \sum _{x\in {{\mathcal {N}}_{x_{0},D}}}\omega (x)\left( \alpha \left| u(x)- u(x_{0}) \right| + \varepsilon _{n} \right) \right) ^{2}&\le 2\alpha ^{2}\left( \sum _{x\in {{\mathcal {N}}_{x_{0},D}}}\omega (x)\left| u(x)- u(x_{0}) \right| \right) ^{2}\\&\quad + O(n^{-\frac{2\beta }{2\beta + 2}}). \end{aligned} \end{aligned}$$

Hence

$$\begin{aligned} {\mathcal {J}}_{k,\phi }(\omega )\le \max \left\{ \alpha ,2\alpha ^{2}\right\} \tilde{{\mathcal {J}}}_{k,\phi }(\omega )+O(n^{-\frac{k\beta }{2\beta + 2}}). \end{aligned}$$

Setting \({\tilde{\omega }}= \mathop {\arg \min }_{\omega }\tilde{{\mathcal {J}}}_{k,\phi }(\omega )\) and using (10) and (11), we have

$$\begin{aligned} {\mathbb {E}}\left| {\hat{u}}_{k,D}^{*}(x_{0})- u(x_{0}) \right| ^{k} \! \le \! \min _{\omega }{\mathcal {J}}_{k,\phi }(\omega )\! \le \! {\mathcal {J}}_{k,\phi }({\tilde{\omega }}) \! \le \!\max \left\{ \alpha ,2\alpha ^{2}\right\} \tilde{{\mathcal {J}}}_{k,\phi }({\tilde{\omega }})+O(n^{-\frac{k\beta }{2\beta + 2}}). \end{aligned}$$

So, from Lemma 1, we get

$$\begin{aligned} {\mathbb {E}}\left| {\hat{u}}_{k,D}^{*}(x_{0})- u(x_{0}) \right| ^{k}= O\left( n^{-\frac{{k}\beta }{2\beta +2}} \right) . \end{aligned}$$

where \(k=1\) or 2.

From the proof of Theorem 3, it is easy to prove that the Eq. (30) holds for all the points on \({\Omega }_{0}\).

1.5 The Proof of Theorem 5

The case \(k=2\) is similar to [53], in this paper, we only prove the case \(k=1\). For simplicity, we shall assume that the kernel \(\kappa \) is rectangular; the proof in the general case can be carried out in the same way. Note that for the rectangular kernel we have \(\left\| v({\mathcal {N}}_{x,d}) - v({\mathcal {N}}_{x_{0},d}) \right\| _{1,\kappa } =\frac{1}{m}\left\| v({\mathcal {N}}_{x,d}) - v({\mathcal {N}}_{x_{0},d}) \right\| _{1}\), where m is the number of points in the similarity patch. Under the Hölder condition (26), for \(x\in {\mathcal {N}}_{x_{0},D}\) we have

$$\begin{aligned} & \frac{1}{m}\left\| v({\mathcal {N}}_{x,d}) - v({\mathcal {N}}_{x_{0},d}) \right\| _{1} \\ & \quad = \frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |u(x+t)+\varepsilon _{n}(x+t)-u(x_{0}+t)-\varepsilon _{n}(x_{0}+t)|\\ & \quad \le \frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |u(x+t)-u(x_{0}+t)|+\frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |\varepsilon _{n}(x+t)-\varepsilon _{n}(x_{0}+t)|\\ & \quad \le \frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |u(x+t)+u(x)-u(x)-u(x_{0}+t)-u(x_{0})+u(x_{0})|\\ & \qquad +\frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |\varepsilon _{n}(x+t)-\varepsilon _{n}(x_{0}+t)|\\ & \quad \le \frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |u(x)-u(x_{0})|+ \frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |u(x+t)-u(x)|\\ & \qquad + \frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |u(x_{0}+t)-u(x_{0})|+\frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |\varepsilon _{n}(x+t)-\varepsilon _{n}(x_{0}+t)|\\ & \quad \le |u(x)-u(x_{0})| + 2L\eta ^{\beta } +\frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |\varepsilon _{n}(x+t)-\varepsilon _{n}(x_{0}+t)|. \end{aligned}$$

Considering \( {\mathbb {E}}\left| \varepsilon (x)-\varepsilon (x_{0}) \right| =\mu \), we get

$$\begin{aligned} & P\left\{ \max _{0\le j \le m} \left| \frac{1}{m}\sum _{t \in {\mathcal {N}}_{0,d} } |\varepsilon _{n}(x+t)-\varepsilon _{n}(x_{0}+t)| -\mu \right| \ge n^{-\frac{\beta }{2+2\beta }} \right\} \\ & \quad \le \frac{n^{\frac{2\beta }{2+2\beta }}}{m} Var\left| \varepsilon (x)-\varepsilon (x_{0}) \right| \\ & \quad = n^{2(\alpha -\frac{1}{2\beta +2})}(2\sigma ^{2}-\mu ^2). \end{aligned}$$

Because \(\frac{1}{2(\beta +1)^{2}}<\alpha <\frac{1}{2 \beta +2}\), \(n^{2(\alpha -\frac{1}{2\beta +2})}\rightarrow 0\) with \(n\rightarrow \infty \). Hence with high probability, we have

$$\begin{aligned} \frac{1}{m}\left\| v({\mathcal {N}}_{x,d}) - v({\mathcal {N}}_{x_{0},d}) \right\| _{1} \le |u(x)-u(x_{0})|+2L\eta ^{\beta } + \mu + n^{-\frac{\beta }{2\beta +2}}. \end{aligned}$$
(A.25)

Taking into account that for \( \alpha \) satisfying \(\frac{1}{4 \beta +2} \le \alpha \le \frac{1}{2 \beta +2}\), it holds that \(2 \alpha \beta \ge 1 / 2-\alpha \), we have \(2\,L\eta ^{\beta }\le O(n^{-2\alpha \beta })\le O(n^{\alpha -\frac{1}{2}})=O(n^{-\frac{\beta }{2\beta +2}})\). Then with high probability, Eq. (A.25) becomes

$$\begin{aligned} \frac{1}{m}\left\| v({\mathcal {N}}_{x,d}) - v({\mathcal {N}}_{x_{0},d}) \right\| _{1} \le |u(x)-u(x_{0})|+ \mu + O(n^{-\frac{\beta }{2\beta +2}}). \end{aligned}$$
(A.26)

This implies that with a high probability

$$\begin{aligned} {\hat{\phi }}_{1}(x,x_{0})\le |u(x)-u(x_{0})|+ O(n^{-\frac{\beta }{2\beta +2}}). \end{aligned}$$
(A.27)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wu, C., Zhao, Y. et al. The Optimal Weights of Non-local Means for Variance Stabilized Noise Removal. J Sci Comput 101, 28 (2024). https://doi.org/10.1007/s10915-024-02668-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02668-1

Keywords

Mathematics Subject Classification