Skip to main content

Advertisement

Log in

Nonlinear Hierarchical Matrix Factorization-Based Tensor Ring Approximation for Multi-dimensional Image Recovery

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Recently, tensor ring (TR) approximation has received increasing attention in multi-dimensional image processing. In TR approximation, the key backbone is the shallow matrix factorizations, which approximate the circular unfolding of the multi-dimensional image. However, the shallow matrix factorization limits the standard TR approximation’s ability to represent images with complex details and textures. To address this limitation, we propose a nonlinear hierarchical matrix factorization-based tensor ring (NHTR) approximation. Specifically, instead of the shallow matrix factorization, we introduce the nonlinear hierarchical matrix factorization in NHTR approximation to approximate circularly \(\lceil \frac{N}{2}\rceil \)-modes unfoldings of an N-th order tensor. Benefiting from the powerful expressive capability of the nonlinear hierarchical matrix factorization, the proposed NHTR approximation can faithfully capture fine details of the clean image compared to classical tensor ring approximation. Empowered with the proposed NHTR, we build a multi-dimensional image recovery model and establish a theoretical error bound between the recovered image and the clean image based on the proposed model. To solve the highly nonlinear and hierarchical optimization problem, we develop an efficient alternating minimization-based algorithm. Experiments on multispectral images and color videos conclusively demonstrate the superior performance of our method over the compared state-of-the-art methods in multi-dimensional image recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All datasets are publicly available.

References

  1. Dong, W., Yu, G., Qi, L., Cai, X.: Practical sketching algorithms for low-rank tucker approximation of large tensors. J. Sci. Comput. 95, 52 (2023)

    Article  MathSciNet  Google Scholar 

  2. Huang, K., Kong, W., Zhou, M., Qin, W., Zhang, F., Wang, J.: Enhanced low-rank tensor recovery fusing reweighted tensor correlated total variation regularization for image denoising. J. Sci. Comput. 99, 69 (2024)

    Article  MathSciNet  Google Scholar 

  3. Che, M., Wei, Y.: Multiplicative algorithms for symmetric nonnegative tensor factorizations and its applications. J. Sci. Comput. 83, 53 (2020)

    Article  MathSciNet  Google Scholar 

  4. Liu, Y., Shang, F., Cheng, H., Cheng, J., Tong, H.: Factor matrix trace norm minimization for low-rank tensor completion. In: Proceedings of the SIAM International Conference on Data Mining pp. 866–874 (2014)

  5. Zhao, X., Bai, M., Sun, D., Zheng, L.: Robust tensor completion: equivalent surrogates, error bounds, and algorithms. SIAM J. Imaging Sci. 15(2), 625–669 (2022)

    Article  MathSciNet  Google Scholar 

  6. Goldfarb, D., Qin, Z.T.: Robust low-rank tensor recovery: models and algorithms. SIAM J. Mat. Anal. Appl. 35(1), 225–253 (2014)

    Article  MathSciNet  Google Scholar 

  7. Filipovic, M., Jukic, A.: Tucker factorization with missing data with application to low-n-rank tensor completion. Multidim. Syst. Signal Process. 26, 677–692 (2015)

    Article  Google Scholar 

  8. Song, Q., Ge, H., Caverlee, J., Hu, X.: Tensor completion algorithms in big data analytics. ACM Trans. Knowl. Discov. Data 13(1), 1–48 (2019)

    Article  Google Scholar 

  9. Geng, X., Smith-Miles, K., Zhou, Z.-H., Wang, L.: Face image modeling by multilinear subspace analysis with missing values. IEEE Trans. Syst. Man Cybern. Part B 41(3), 881–892 (2011)

    Article  Google Scholar 

  10. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  11. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601–624 (2015)

    Article  MathSciNet  Google Scholar 

  12. Zhang, H., Zhao, X.-L., Jiang, T.-X., Ng, M.K., Huang, T.-Z.: Multiscale feature tensor train rank minimization for multidimensional image recovery. IEEE Trans. Cybern. 52(12), 13395–13410 (2022)

    Article  Google Scholar 

  13. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  Google Scholar 

  14. Cai, J.-F., Li, J., Xia, D.: Provable tensor-train format tensor completion by Riemannian optimization. J. Mach. Learn. Res. 23(1), 1–77 (2022)

    MathSciNet  Google Scholar 

  15. Yuan, L., Zhao, Q., Gui, L., Cao, J.: High-order tensor completion via gradient-based optimization under tensor train format. Signal Process. Image Commun. 73, 53–61 (2019)

    Article  Google Scholar 

  16. Yuan, L., Zhao, Q., Cao, J.: High-order tensor completion for data recovery via sparse tensor-train optimization. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1258–1262 (2018)

  17. Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)

    Article  MathSciNet  Google Scholar 

  18. He, J., Zheng, X., Gao, P., Zhou, Y.: Low-rank tensor completion based on tensor train rank with partially overlapped sub-blocks. Signal Process. 190, 108339 (2022)

    Article  Google Scholar 

  19. Zhang, T.-H., Zhao, J.-L., Fang, S., Li, Z., Gong, M.-G.: Full-mode-augmentation tensor-train rank minimization for hyperspectral image inpainting. IEEE Trans. Geosci. Remote Sens. 62, 1–13 (2024)

    Google Scholar 

  20. Zhao, Q., Zhou, G., Xie, S., Zhang, L., Cichocki, A.: Tensor ring decomposition. arXiv:1606.05535 (2016)

  21. Wang, W., Aggarwal, V., Aeron, S.: Efficient low rank tensor ring completion. In: IEEE International Conference on Computer Vision pp. 5698–5706 (2017)

  22. Qiu, Y., Zhou, G., Zhao, Q., Xie, S.: Noisy tensor completion via low-rank tensor ring. IEEE Trans. Neural Netw. Learn. Syst. 35(1), 1127–1141 (2024)

    Article  MathSciNet  Google Scholar 

  23. Yuan, L., Li, C., Cao, J., Zhao, Q.: Rank minimization on tensor ring: an efficient approach for tensor decomposition and completion. Mach. Learn. 109, 603–622 (2020)

    Article  MathSciNet  Google Scholar 

  24. Huang, H., Liu, Y., Liu, J., Zhu, C.: Provable tensor ring completion. Signal Process. 171, 107486 (2020)

    Article  Google Scholar 

  25. Yu, J., Zhou, G., Li, C., Zhao, Q., Xie, S.: Low tensor-ring rank completion by parallel matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 3020–3033 (2021)

    Article  MathSciNet  Google Scholar 

  26. Yu, J., Zou, T., Zhou, G.: Low tensor-ring rank completion: parallel matrix factorization with smoothness on latent space. Neural Comput. Appl. 35(9), 7003–7016 (2022)

    Article  Google Scholar 

  27. Yu, J., Li, C., Zhao, Q., Zhao, G.: Tensor-ring nuclear norm minimization and application for visual: Data completion. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3142–3146 (2019)

  28. He, W., Yokoya, N., Yuan, L., Zhao, Q.: Remote sensing image reconstruction using tensor ring completion and total variation. IEEE Trans. Geosci. Remote Sens. 57(11), 8998–9009 (2019)

    Article  Google Scholar 

  29. Huang, H., Liu, Y., Long, Z., Zhu, C.: Robust low-rank tensor ring completion. IEEE Trans. Comput. Imaging 6, 1117–1126 (2020)

    Article  MathSciNet  Google Scholar 

  30. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Anna. Stat. 2(1), 39–48 (1974)

    MathSciNet  Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (2015)

  32. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020)

    Article  Google Scholar 

  33. Qiu, Y., Zhou, G., Huang, Z., Zhao, Q., Xie, S.: Efficient tensor robust PCA under hybrid model of Tucker and tensor train. IEEE Signal Process. Lett. 29, 627–631 (2021)

    Article  Google Scholar 

  34. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv:1606.08415 (2023)

  35. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44, 800–801 (2008)

    Article  Google Scholar 

  36. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Xiong, F., Zhou, J., Qian, Y.: Hyperspectral restoration via \(l_0\) gradient regularized low-rank tensor factorization. IEEE Trans. Geosci. Remote Sens. 57(12), 10410–10425 (2019)

    Article  Google Scholar 

Download references

Funding

This research is supported by NSFC (No. 12171072 and 12371456), Sichuan Science and Technology Program (No. 2024NSFJQ0038 and 2023ZYD0007), National Key Research and Development Program of China (No. 2020YFA0714001), Fund of Hubei Key Laboratory of Inland Shipping Technology (No. NHHY2023003)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Zhu Huang or Xi-Le Zhao.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WH., Huang, TZ., Zhao, XL. et al. Nonlinear Hierarchical Matrix Factorization-Based Tensor Ring Approximation for Multi-dimensional Image Recovery. J Sci Comput 101, 31 (2024). https://doi.org/10.1007/s10915-024-02670-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02670-7

Keywords