Skip to main content
Log in

A General Degree Divergence-Free Finite Element Method for the Two-Dimensional Stokes Problem on Smooth Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we construct and analyze divergence-free finite element methods for the Stokes problem on smooth domains. The discrete spaces are based on the Scott-Vogelius finite element pair of arbitrary polynomial degree greater than 2. By combining the Piola transform with the classical isoparametric framework, and with a judicious choice of degrees of freedom, we prove that the method converges with optimal order in the energy norm. We also show that the discrete velocity error converges with optimal order in the \(L^2\)-norm. Numerical experiments are presented, which support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM Math. Model. Numer. Anal., 19 pp. 111–143 (1985)

  2. Guzmán, J., Neilan, M.: Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in arbitrary dimensions. SIAM J. Numer. Anal. 56, 2826–2844 (2018)

    Article  MathSciNet  Google Scholar 

  3. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MathSciNet  Google Scholar 

  4. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51, 1308–1326 (2013)

    Article  MathSciNet  Google Scholar 

  5. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59, 492–544 (2017)

    Article  MathSciNet  Google Scholar 

  6. Neilan, M., Otus, B.: Divergence-free Scott-Vogelius elements on curved domains. SIAM J. Numer. Anal. 59, 1090–1116 (2021)

    Article  MathSciNet  Google Scholar 

  7. Liu, H., Neilan, M., Olshanskii, M.: A CutFEM divergence-free discretization for the Stokes problem. ESAIM Math. Model. Numer. Anal. 57, 143–165 (2023)

    Article  MathSciNet  Google Scholar 

  8. Liu, H., Neilan, M., Otus, M.B.: A divergence-free finite element method for the Stokes problem with boundary correction. J. Numer. Math. 31, 105–123 (2023)

    Article  MathSciNet  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, vol. 3. Springer, NewYork (2008)

    Book  Google Scholar 

  10. Scott, L.R.: Finite element techniques for curved boundaries, PhD thesis, Massachusetts Institute of Technology, 1973

  11. Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26, 1212–1240 (1989)

    Article  MathSciNet  Google Scholar 

  12. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)

    Article  MathSciNet  Google Scholar 

  13. Ciarlet, P.G., Raviart, P.-A.: Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Engrg. 1, 217–249 (1972)

    Article  MathSciNet  Google Scholar 

  14. Brenner, S.C., Neilan, M., Sung, L.-Y.: Isoparametric \(C^0\) interior penalty methods for plate bending problems on smooth domains. Calcolo 50, 35–67 (2013)

    Article  MathSciNet  Google Scholar 

  15. Elliott, C.M., Ranner, T.: Finite element analysis for a coupled bulk-surface partial differential equation. IMA J. Numer. Anal. 33, 377–402 (2013)

    Article  MathSciNet  Google Scholar 

  16. Alfeld, P.: A trivariate clough-tocher scheme for tetrahedral data. Comput. Aided Geom. Des. 1, 169–181 (1984)

    Article  Google Scholar 

  17. Schenck, H.: Splines on the Alfeld split of a simplex and type a root systems. J. Approx. Theory 182, 1–6 (2014)

    Article  MathSciNet  Google Scholar 

  18. Fu, G., Guzmán, J., Neilan, M.: Exact smooth piecewise polynomial sequences on Alfeld splits. Math. Comp. 89, 1059–1091 (2020)

    Article  MathSciNet  Google Scholar 

  19. Olshanskii, M.A., Rebholz, L.G.: Application of barycenter refined meshes in linear elasticity and incompressible fluid dynamics. Electron. Trans. Numer. Anal. 38, 258–274 (2011)

    MathSciNet  Google Scholar 

  20. Arnold, D.N., Qin, J.: Quadratic velocity/linear pressure stokes elements, in Advances in Computer Methods for Partial Differential Equations-VII, R. Vichnevetsky, D. Knight, and G. Richter, eds., IMACS, 1992, pp. 28–34

  21. Kato, T., Mitrea, M., Ponce, G., Taylor, M.: Extension and representation of divergence-free vector fields on bounded domains. Math. Res. Lett. 7, 643–650 (2000)

    Article  MathSciNet  Google Scholar 

  22. Xu, Y.: On Gauss-Lobatto integration on the triangle. SIAM J. Numer. Anal. 49, 541–548 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Michael Neilan was supported in part by the NSF, grant DMS-2309425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Durst.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Lemma 3.2

Proof

Write \(\varvec{v}(x) = A_T {\hat{\varvec{v}}} (\hat{x})\) for some \({\hat{\varvec{v}}}\in \hat{\varvec{V}}_k\). We then use Lemma 2.3, (2.5), and equivalence of norms to obtain

$$\begin{aligned} \begin{aligned} \Vert \varvec{v}\Vert _{W^{\ell ,p}(K)}&\le C h_T^{2/p-\ell } \Vert A_T {\hat{\varvec{v}}}\Vert _{W^{\ell ,p}({\hat{K}})}\\&\le C h_T^{2/p-\ell } \Vert A_T\Vert _{W^{j,\infty }({\hat{K}})} \Vert {\hat{\varvec{v}}}\Vert _{W^{\ell ,p}({\hat{K}})}\\&\le C h_T^{2/p-\ell -1} \Vert {\hat{\varvec{v}}}\Vert _{W^{\ell ,p}({\hat{K}})}\le C h_T^{2/p-\ell -1} \Vert {\hat{\varvec{v}}}\Vert _{L^{q}({\hat{K}})}. \end{aligned} \end{aligned}$$
(A.1)

Likewise, we have

$$\begin{aligned} \begin{aligned} \Vert {\hat{\varvec{v}}}\Vert _{L^q({\hat{K}})}\le \Vert A_T^{-1}\Vert _{L^\infty ({\hat{K}})} \Vert A_T {\hat{\varvec{v}}}\Vert _{L^q({\hat{K}})} \le C h_T^{1-2/q} \Vert \varvec{v}\Vert _{L^q(K)}. \end{aligned} \end{aligned}$$
(A.2)

Combining (A.1)–(A.2) yields (3.1) for the case \(m=0\). The estimate (3.1) for general m then follows by standard arguments (cf. [9, Lemma 4.5.3]).

To prove (3.2), we first use (2.5):

$$\begin{aligned} |\varvec{v}|_{W^{\ell ,p}(K)}&\le C \Big [\underbrace{h_T^{2/p+\ell } \sum _{r=0}^k h_T^{-2r} |A_T {\hat{\varvec{v}}}|_{W^{r,p}({\hat{K}})}}_{=:I} +\underbrace{h_T^{2/p+\ell } \sum _{r=k+1}^\ell h_T^{-2r} |A_T \hat{\varvec{v}}|_{W^{r,p}({\hat{K}})}}_{=:II}\Big ]. \end{aligned}$$

To bound I, we use (2.5) once again to obtain

$$\begin{aligned} I\le h_T^{2/p+\ell }\sum _{r=0}^k h_T^{-2r} \cdot h_T^{r-2/p} \Vert \varvec{v}\Vert _{W^{r,p}(K)}\le C h_T^{\ell -k}\Vert \varvec{v}\Vert _{W^{k,p}(K)}. \end{aligned}$$

For II, we use the fact that \({\hat{\varvec{v}}}\) is a polynomial of degree \(\le k\) on K to obtain

$$\begin{aligned} |A_T {\hat{\varvec{v}}}|_{W^{r,p}({\hat{K}})}&\le C \sum _{j=0}^k |A_T|_{W^{r-j,\infty }({\hat{K}})} |{\hat{\varvec{v}}}|_{W^{j,p}({\hat{K}})}\\&\le C\sum _{j=0}^k h_T^{r-j-1} |A_T^{-1} A_T {\hat{\varvec{v}}}|_{W^{j,p}({\hat{K}})}\\&\le C\sum _{j=0}^k \sum _{i=0}^j h_T^{r-j-1} |A_T^{-1}|_{W^{j-i,\infty }({\hat{K}})} |A_T {\hat{\varvec{v}}}|_{W^{i,p}({\hat{K}})}\\&\le C\sum _{j=0}^k \sum _{i=0}^j h_T^{r-i} |A_T {\hat{\varvec{v}}}|_{W^{i,p}({\hat{K}})}\\&\le C\sum _{j=0}^k \sum _{i=0}^j h_T^{r-i}\cdot h_T^{i-2/p} \Vert \varvec{v}\Vert _{W^{i,p}(K)}\\&\le C h_T^{r-2/p} \Vert \varvec{v}\Vert _{W^{k,p}(K)}. \end{aligned}$$

Thus,

$$\begin{aligned} II \le C h_T^{2/p+\ell } \sum _{r=k+1}^\ell h_T^{-r-2/p} \Vert \varvec{v}\Vert _{W^{k,p}(K)}\le C \Vert \varvec{v}\Vert _{W^{k,p}(K)}. \end{aligned}$$

Combining the bounds for I and II completes the proof of (3.2). \(\square \)

Appendix B. Proof of Lemma 4.5

Proof

Define \(\varvec{E}_h: \varvec{V}^h \rightarrow \varvec{H}_0^1(\Omega _h)\) such that, for \(\varvec{v}\in \varvec{V}^h\),

$$\begin{aligned} \varvec{E}_h \varvec{v}|_{T} = (\tilde{\varvec{v}} \circ F_{\tilde{T}}\circ F_{T}^{-1})|_{T}, \end{aligned}$$

where \(\tilde{\varvec{v}}\) is the function in \(\tilde{\varvec{V}}\) uniquely defined by

$$\begin{aligned} \varvec{v}|_T(a) = \tilde{\varvec{v}}|_{\tilde{T}}(\tilde{a}) \quad \forall {a} \in \mathcal {N}_T, \quad \forall T \in \mathcal {T}_h, \end{aligned}$$

where \(T= G_h(\tilde{T})\). In other words, in a standard isoparametric, kth degree Lagrange finite element method, \(\varvec{E}_h \varvec{v}\) would be the function on the isoparametric element associated with \(\tilde{\varvec{v}}\) on \(\tilde{T}\). Thus, \(\varvec{E}_h\varvec{v}\in \varvec{H}_0^1(\Omega _h)\).

As shown in [6], \(\tilde{\varvec{v}} = \varvec{E}_h \varvec{v}\) on affine triangles, and we may conclude

$$\begin{aligned} \varvec{E}_h\varvec{v}|_T(a) = \varvec{v}|_T(a) \quad \forall {a} \in \mathcal {N}_T, \quad \forall T \in \mathcal {T}_h. \end{aligned}$$

Our goal is to estimate \(\varvec{v}- \varvec{E}_h \varvec{v}\), and our proof follows closely with the proof of Lemma 4.5 in [6]. However, here we provide a more general result.

As \(\varvec{v}= \varvec{E}_h \varvec{v}\) on affine triangles, we only consider \(T \in \mathcal {T}_h\) with curved boundaries. Additionally, we know \(\varvec{v}|_{\partial T \cap \partial \Omega _h} = 0\). We may write \(\varvec{v}|_T (x) = A_T (\hat{x})\hat{\varvec{v}}(\hat{x})\), for some \(\hat{\varvec{v}}\in \hat{\varvec{V}}\), where \(A_T = DF_T/\det {(DF_T)}\). Furthermore, there exists \(\hat{\varvec{w}} \in \hat{\varvec{V}}\) such that \(\hat{\varvec{w}}(\hat{x}) = \varvec{E}_h \varvec{v}|_{T}(x)\). Consequently,

$$\begin{aligned} A_T(\hat{a})\hat{\varvec{v}}(\hat{a}) = \hat{\varvec{w}}(\hat{a}) \quad \forall \hat{a} \in \mathcal {N}_{\hat{T}}, \end{aligned}$$

so \(\hat{\varvec{w}}\) is the piecewise kth degree Lagrange interpolant of \(A_T\hat{\varvec{v}}\) on \(\hat{T}^{CT}\).

By the Bramble-Hilbert lemma, we have

$$\begin{aligned} \Vert A_T \hat{\varvec{v}} - \hat{\varvec{w}}\Vert _{H^i(\hat{K})} \le C \vert A_T \hat{\varvec{v}}\vert _{H^{k+1}(\hat{K})} \quad \forall \hat{K} \in \hat{T}^{CT}, \quad i = 0,1,\ldots ,k. \end{aligned}$$
(B.1)

We may then bound the right-hand side using Lemma 2.3 and recognizing that \(\hat{\varvec{v}}\) is a polynomial of degree k. Thus we have

$$\begin{aligned} \begin{aligned} \vert A_T \hat{\varvec{v}}\vert _{H^{k+1}(\hat{K})} \le&C \sum _{j=0}^{k+1} \vert A_T\vert _{W^{k+1-j}({\hat{K}})} \vert {\hat{\varvec{v}}} \vert _{H^j({\hat{K}})} = C \sum _{j=0}^{k} \vert A_T\vert _{W^{k+1-j}({\hat{K}})} \vert {\hat{\varvec{v}}} \vert _{H^j({\hat{K}})}\\ \le&C \sum _{j=0}^{k} h_T^{k-j} \vert {\hat{\varvec{v}}} \vert _{H^j({\hat{K}})}. \end{aligned} \end{aligned}$$
(B.2)

Using Lemmas 2.3 and 2.4, we have

$$\begin{aligned} \begin{aligned} \vert {\hat{\varvec{v}}} \vert _{H^j({\hat{K}})}&= \vert A_T^{-1} A_T \hat{\varvec{v}} \vert _{H^j({\hat{K}})} \le C \sum _{\ell =0}^j |A_T^{-1}|_{W^{j-\ell }({\hat{K}})} |A_T {\hat{\varvec{v}}}|_{H^\ell ({\hat{K}})}\\&\le C \sum _{\ell =0}^j h_T^{1+j-\ell } |A_T {\hat{\varvec{v}}}|_{H^\ell ({\hat{K}})}\\&\le C\sum _{\ell =0}^j h_T^{1+j-\ell } h_T^{\ell -1}\Vert \varvec{v}\Vert _{H^\ell ( K)}\le C h_T^j \Vert \varvec{v}\Vert _{H^j(K)}. \end{aligned} \end{aligned}$$
(B.3)

Inserting this estimate into (B.2) yields

$$\begin{aligned} |A_T {\hat{\varvec{v}}}|_{H^{k+1}({\hat{K}})}\le C h_T^k \Vert \varvec{v}\Vert _{H^k(K)}, \end{aligned}$$

and therefore by (B.1) and Lemma 2.4,

$$\begin{aligned} |\varvec{v}-\varvec{E}_h \varvec{v}|_{H^i(K)}\le C h_T^{1-i} \Vert A_T {\hat{\varvec{v}}}-\hat{\varvec{w}}\Vert _{H^i({\hat{K}})}\le C h_T^{1-i} |A_T {\hat{\varvec{v}}}|_{H^{k+1}({\hat{K}})}\le C h_T^{k+1-i}\Vert \varvec{v}\Vert _{H^k(K)}. \end{aligned}$$
(B.4)

An applicaiton of the inverse inequality (3.1) then yields the desired estimate (4.3). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durst, R., Neilan, M. A General Degree Divergence-Free Finite Element Method for the Two-Dimensional Stokes Problem on Smooth Domains. J Sci Comput 101, 33 (2024). https://doi.org/10.1007/s10915-024-02674-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02674-3

Keywords