Abstract
In contrast to the classical Allen–Cahn equation, the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier not only satisfies the maximum bound principle (MBP) and energy dissipation law but also ensures mass conservation. Many existing schemes often fail to preserve all these properties at the discrete level or require high regularity in time on the exact solution for convergence analysis. In this paper, we construct a new class of low regularity integrators (LRIs) for time discretization of the conservative Allen–Cahn equation by repeatedly using Duhamel’s formula. The proposed first- and second-order LRI schemes are shown to conserve mass unconditionally and satisfy the MBP under some time step size constraints. Temporal error estimates for these schemes are derived under a low regularity assumption that the exact solution is only Lipschitz continuous in time, followed by a rigorous proof for energy stability of the corresponding time-discrete solutions. Various numerical experiments and comparisons in two and three dimensions are presented to verify the theoretical results and illustrate the performance of the LRI schemes, especially when the interfacial parameter approaches zero.










Similar content being viewed by others
Data Availibility
Enquiries about data availability should be directed to the authors.
References
Aihara, S., Takaki, T., Takada, N.: Multi-phase-field modeling using a conservative Allen-Cahn equation for multiphase flow. Comput. Fluids 178, 141–151 (2019)
Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)
Brassel, M., Bretin, E.: A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Meth. Appl. Sci. 34(10), 1157–1180 (2011)
Calvo, M.C., Schratz, K.: Uniformly accurate low regularity integrators for the Klein-Gordon equation from the classical to nonrelativistic limit regime. SIAM J. Numer. Anal. 60(2), 888–912 (2022)
Chen, X., Hilhorst, D., Logak, E.: Mass conserving Allen-Cahn equation and volume preserving mean curvature flow. Interf. Free Bound. 12(4), 527–549 (2011)
Cheng, Q., Wang, C.: Error estimate of a second order accurate scalar auxiliary variable (SAV) numerical method for the epitaxial thin film equation. Adv. Appl. Math. Mech. 13, 1318–1354 (2021)
Choi, Y., Kim, J.: Maximum principle preserving and unconditionally stable scheme for a conservative Allen-Cahn equation. Eng. Anal. Bound. Elem. 150, 111–119 (2023)
Choi, J.W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allen-Cahn equation. Phys. A 388(9), 1791–1803 (2009)
Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)
Debussche, A., Dettori, L.: On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. Theory Methods Appl. 24(10), 1491–1514 (1995)
Doan, C.-K., Hoang, T.-T.-P., Ju, L., Schratz, K.: Low regularity integrators for semilinear parabolic equations with maximum bound principles. BIT Numer. Math. 63(1), 2 (2023)
Doan, C.-K., Hoang, T.-T.-P., Ju, L.: Fully discrete error analysis of first-order low regularity integrators for the Allen-Cahn equation. Numer. Methods Partial Differ. Equ. 39(5), 3594–3608 (2023)
Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)
Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63(2), 317–359 (2021)
Feng, X., Prohl, A.: Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)
Feng, J., Zhou, Y., Hou, T.: A maximum-principle preserving and unconditionally energy-stable linear second-order finite difference scheme for Allen-Cahn equations. Appl. Math. Lett. 118, 107179 (2021)
Geng, S., Li, T., Ye, Q., Yang, X.: A new conservative Allen-Cahn type Ohta-Kawaski phase-field model for diblock copolymers and its numerical approximations. Adv. Appl. Math. Mech. 14(1), 101–124 (2022)
He, D., Pan, K., Hu, H.: A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. Appl. Numer. Math. 151, 44–63 (2020)
Hou, T., Leng, H.: Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations. Appl. Math. Lett. 102, 106150 (2020)
Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72(3), 1214–1231 (2017)
Hou, T., Xiu, D., Jiang, W.: A new second-order maximum-principle preserving finite difference scheme for Allen-Cahn equations with periodic boundary conditions. Appl. Math. Lett. 104, 106265 (2020)
Huang, Z., Lin, G., Ardekani, A.M.: Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen-Cahn model. J. Comput. Phys. 420, 109718 (2020)
Huang, Z., Lin, G., Ardekani, A.M.: A consistent and conservative volume distribution algorithm and its applications to multiphase flows using phase-field models. Int. J. Multiph. Flow 142, 103727 (2021)
Jeong, D., Kim, J.: Conservative Allen-Cahn-Navier-Stokes system for incompressible two-phase fluid flows. Comput. Fluids 156, 239–246 (2017)
Jiang, K., Ju, L., Li, J., Li, X.: Unconditionally stable exponential time differencing schemes for the mass-conserving Allen-Cahn equation with nonlocal and local effects. Numer. Methods Partial Differ. Equ. 38(6), 1636–1657 (2022)
Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62(2), 431–455 (2015)
Kim, J., Jeong, D., Yang, S.D., Choi, Y.: A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces. J. Comput. Phys. 334, 170–181 (2017)
Kim, J., Lee, S., Choi, Y.: A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier. Int. J. Eng. Sci. 84, 11–17 (2014)
Lee, H.G.: High-order and mass conservative methods for the conservative Allen-Cahn equation. Comput. Math. Appl. 72(3), 620–631 (2016)
Lee, D., Kim, J.: Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations. Math. Comput. Simul. 119, 35–56 (2016)
Lee, H.G., Shin, J., Lee, J.Y.: A high-order and unconditionally energy stable scheme for the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier. J. Sci. Comput. 90, 1–12 (2022)
Li, J., Ju, L., Cai, Y., Feng, X.: Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint. J. Sci. Comput. 87(3), 1–32 (2021)
Li, B., Ma, S., Schratz, K.: A semi-implicit exponential low-regularity integrator for the Navier-Stokes equations. SIAM J. Numer. Anal. 60(4), 2273–2292 (2022)
Liao, H.L., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J. Comput. Phys. 414, 109473 (2020)
Ostermann, A., Rousset, F., Schratz, K.: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21(3), 725–765 (2021)
Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)
Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)
Ren, F., Song, B., Sukop, M.C., Hu, H.: Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation. Phys. Rev. E 94(2), 023311 (2016)
Rousset, F., Schratz, K.: A general framework of low regularity integrators. SIAM J. Numer. Anal. 59(3), 1735–1768 (2021)
Rubinstein, J., Sternberg, P.: Nonlocal reaction-diffusion equations and nucleation. IMA J. Appl. Math. 48(3), 249–264 (1992)
Schratz, K., Wang, Y., Zhao, X.: Low-regularity integrators for nonlinear Dirac equations. Math. Comput. 90(327), 189–214 (2021)
Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)
Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Commun. Math. Sci. 14(6), 1517–1534 (2016)
Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst 28(4), 1669–1691 (2010)
Shin, J., Lee, H.G., Lee, J.Y.: Unconditionally stable methods for gradient flow using convex splitting Runge-Kutta scheme. J. Comput. Phys. 347, 367–381 (2017)
Tan, Z., Zhang, C.: The discrete maximum principle and energy stability of a new second-order difference scheme for Allen-Cahn equations. Appl. Numer. Math. 166, 227–237 (2021)
Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34(5), 471–481 (2016)
Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011)
Wu, J., Yang, J., Tan, Z.: Unconditionally energy-stable time-marching methods for the multi-phase conservative Allen-Cahn fluid models based on a modified SAV approach. Comput. Meth. Appl. Mech. Eng. 398, 115291 (2022)
Wu, Y., Zhao, X.: Optimal convergence of a second-order low-regularity integrator for the KdV equation. IMA J. Numer. Anal. 42(4), 3499–3528 (2022)
Wu, Y., Zhao, X.: Embedded exponential-type low-regularity integrators for KdV equation under rough data. BIT Numer. Math. 62(3), 1049–1090 (2022)
Xiao, X., He, R., Feng, X.: Unconditionally maximum principle preserving finite element schemes for the surface Allen-Cahn type equations. Numer. Methods Partial Differ. Equ. 36(2), 418–438 (2020)
Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng. 345, 826–853 (2019)
Xu, Z., Yang, X., Zhang, H., Xie, Z.: Efficient and linear schemes for anisotropic Cahn-Hilliard model using the stabilized-invariant energy quadratization (S-IEQ) approach. Comput. Phys. Commun. 238, 36–49 (2019)
Yang, J., Jeong, D., Kim, J.: A fast and practical adaptive finite difference method for the conservative Allen-Cahn model in two-phase flow system. Int. J. Multiph. Flow 137, 103561 (2021)
Yang, J., Kim, J.: Numerical study of incompressible binary fluids on 3D curved surfaces based on the conservative Allen-Cahn-Navier-Stokes model. Comput. Fluids 228, 105094 (2021)
Yang, X., Zhang, G.: Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential. J. Sci. Comput. 82(3), 55 (2020)
Zhai, S., Weng, Z., Feng, X.: Investigations on several numerical methods for the non-local Allen-Cahn equation. Int. J. Heat Mass Transfer 87, 11118 (2015)
Zhai, S., Weng, Z., Feng, X.: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model. Appl. Math. Model. 40(2), 1315–1324 (2016)
Zhang, H., Yan, J., Qian, X., Chen, X., Song, S.: Explicit third-order unconditionally structure-preserving schemes for conservative Allen-Cahn equations. J. Sci. Comput. 90, 1–29 (2022)
Zhang, H., Yan, J., Qian, X., Song, S.: Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation. Appl. Numer. Math. 161, 372–390 (2021)
Funding
T.-T.-P. Hoang’s work is partially supported by U.S. National Science Foundation under Grant Number DMS-2041884. L. Ju’s work is partially supported by U.S. National Science Foundation under Grant Number DMS-2109633.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have not disclosed any Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Doan, CK., Hoang, TTP. & Ju, L. Low Regularity Integrators for the Conservative Allen–Cahn Equation with a Nonlocal Constraint. J Sci Comput 101, 57 (2024). https://doi.org/10.1007/s10915-024-02703-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02703-1
Keywords
- Conservative Allen–Cahn equation
- Low regularity integrators
- Mass conservation
- Maximum bound principle
- Energy stability