Skip to main content

A Semi-implicit Stochastic Multiscale Method for Radiative Heat Transfer Problem in Composite Materials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a new semi-implicit stochastic multiscale method for the radiative heat transfer problem with additive noise fluctuation in composite materials. In the proposed method, the strong nonlinearity term induced by heat radiation is first approximated, by a semi-implicit predictor-corrected numerical scheme, for each fixed time step, resulting in a spatially random multiscale heat transfer equation. Then, the infinite-dimensional stochastic processes are modeled and truncated using a complete orthogonal system, facilitating the reduction of the model’s dimensionality in the random space. The resulting low-rank random multiscale heat transfer equation is approximated and computed by using efficient spatial basis functions based multiscale method. The main advantage of the proposed method is that it separates the computational difficulty caused by the spatial multiscale properties, the high-dimensional randomness and the strong nonlinearity of the solution, so they can be overcome separately using different strategies. The convergence analysis is carried out, and the optimal rate of convergence is also obtained for the proposed semi-implicit stochastic multiscale method. Numerical experiments on several test problems for composite materials with various microstructures are also presented to gauge the efficiency and accuracy of the proposed semi-implicit stochastic multiscale method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Datasets produced or examined in the present study can be obtained from the corresponding author upon reasonable request.

References

  1. Charrier, P., Dubroca, B.: Asymptotic transport models for heat and mass transfer in reactive porous media. Multiscale Model. Simul. 2, 124–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chung, E., Efendiev, Y., Leung, W.: Constraint energy minimizing generalized multiscale finite element method. Comput. Methods Appl. Mech. Eng. 339, 298–319 (2018). https://doi.org/10.1016/j.cma.2018.04.010

    Article  MathSciNet  MATH  Google Scholar 

  3. Chung, E., Pun, S.: Online adaptive basis enrichment for mixed cem-gmsfem. Multiscale Model. Simul. 17, 1103–1122 (2019). https://doi.org/10.1137/18M1222995

    Article  MathSciNet  MATH  Google Scholar 

  4. Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218(23), 11496–11504 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Douglas, J., Jr., Jones, B., Jr.: On predictor-corrector methods for nonlinear parabolic differential equations. J. Soc. Indus. Appl. Math. 11(1), 195–204 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal cahn-hilliard equation. J. Comput. Phys. 363, 39–54 (2018). https://doi.org/10.1016/j.jcp.2018.02.023

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Q., Zhang, T.: Numerical approximation of some linear stochastic partial differential equations driven by special additive noises. J. Numer. Anal. 40, 1421–1445 (2002). https://doi.org/10.1137/S0036142901387956

    Article  MathSciNet  MATH  Google Scholar 

  8. Edwards, D., Balakrishnan, A.: Thermal radiation by combustion gases. Int. J. Heat Mass Trans. 16(1), 25–40 (1973). https://doi.org/10.1016/0017-9310(73)90248-2

    Article  Google Scholar 

  9. Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013). https://doi.org/10.1016/j.jcp.2013.04.045

    Article  MathSciNet  MATH  Google Scholar 

  10. Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods: oversampling strategies. Int. J. Multi. Comput. Eng. 12, 465–484 (2014). https://doi.org/10.1615/IntJMultCompEng.2014007646

    Article  MATH  Google Scholar 

  11. Efendiev, Y., Galvis, J., Wu, X.: Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230(4), 937–955 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fleck, J.A., Jr., Cummings, J., Jr.: An implicit monte carlo scheme for calculating time and frequency dependent nonlinear radiation transport. J. Comput. Phys. 8(3), 313–342 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, S., Chung, E., Mai, T.: Constraint energy minimizing generalized multiscale finite element method for nonlinear poroelasticity and elasticity. J. Comput. Phys. 417, 109569 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heida, M., Kornhuber, R., Podlesny, J.: Fractal homogenization of multiscale interface problems. Multiscale Model. Simul. 18, 294–314 (2020). https://doi.org/10.1137/18M1204759

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou, T., Wu, X.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997). https://doi.org/10.1006/jcph.1997.5682

    Article  MathSciNet  MATH  Google Scholar 

  16. Hou, T., Wu, X., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999). https://doi.org/10.1090/S0025-5718-99-01077-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Howell, J., MP., M., Daun, K., Siegel, R.: Thermal radiation heat transfer - Seventh edition (2020)

  18. Hu, G., Zegeling, P.A.: Simulating finger phenomena in porous media with a moving finite element method. J. Comput. Phys. 230, 3249–3263 (2011). https://doi.org/10.1016/j.jcp.2011.01.031

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, J., Cao, L.: Global regularity and multiscale approach for thermal radiation heat transfer. Multiscale Model. Simul. 12, 694–724 (2014). https://doi.org/10.1137/130919702

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, J., Cao, L., Yang, C.: A multiscale algorithm for radiative heat transfer equation with rapidly oscillating coefficients. Appl. Math. Comput. 266, 149–168 (2015). https://doi.org/10.1016/j.amc.2015.05.048

    Article  MathSciNet  MATH  Google Scholar 

  21. Jagalur-Mohan, J., Sahni, O., Doostan, A., Oberai, A.: Variational multiscale analysis: The fine-scale green’s function for stochastic partial differential equations. J. Uncertain. Quantif. 2, 397–422 (2014). https://doi.org/10.1137/130940359

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, B., Sun, W.: Error analysis of linearized semi-implicit galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal, Modeling (2013)

    MATH  Google Scholar 

  23. Liao, Q., Willcox, K.: A domain decomposition approach for uncertainty analysis. J. Sci. Comput. 37, 103–133 (2015). https://doi.org/10.1137/140980508

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Z., Qiao, Z.: Strong approximation of monotone stochastic partial different equations driven by white noise. J. Numer. Anal. 40, 1074–1093 (2020). https://doi.org/10.1093/imanum/dry088

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, C., Huang, J., Cao, L., Lin, Y.: Multiscale computations for the maxwell-schrödinger system in heterogeneous nanostructures. Commun. Comput. Phys. 27, 1443–1469 (2020). https://doi.org/10.4208/cicp.OA-2019-0004

    Article  MathSciNet  MATH  Google Scholar 

  26. McClarren, R.G., Evans, T.M., Lowrie, R.B., Densmore, J.D.: Semi-implicit time integration for pn thermal radiative transfer. J. Comput. Phys. 227(16), 7561–7586 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Noor, K.I., Noor, M.A.: Predictor-corrector halley method for nonlinear equations. Appl. Math. Comput. 188(2), 1587–1591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ohlberger, M., Verfurth, B.: A new heterogeneous multiscale method for the helmholtz equation with high contrast. Multiscale Model. Simul. 16, 385–411 (2018). https://doi.org/10.1137/16M1108820

    Article  MathSciNet  MATH  Google Scholar 

  29. Schulze, T., Alexiades, V., Feng, X.: Multi-scale modeling and simulation in materials science, preface. J. Sci. Comput. 37, 1–2 (2008). https://doi.org/10.1007/s10915-008-9211-y

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, H., No’e, F.: Variational approach for learning markov processes from time series data. J. Nonlinear Sci. 30, 23–66 (2020). https://doi.org/10.1007/s00332-019-09567-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, J., Mao, S., He, X., Yang, X., He, Y.: A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Methods Appl. Mech. Eng. 356, 435–464 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, Z., Cui, J., Wang, Z., Zhang, Y.: Multiscale computational method for nonstationary integrated heat transfer problem in periodic porous materials. Numer. Methods Partial Differ. Equ. Int. J. 32, 510–530 (2016). https://doi.org/10.1002/num.22003

  33. Yuen, W.W.: Combined conductive/radiative heat transfer in high porosity fibrous insulation materials: Theory and experiment. In: Proceedings of the 6th ASME-JSME Thermal Engineering Joint Conference pp. 16–20 (2003)

  34. Zhang, S., Guan, X., Jiang, L.: Convergence analysis of constraint energy minimizing generalized multiscale finite element method for a linear stochastic parabolic partial differential equation driven by additive noises. J. Comput. Appl. Math. 389, 913–943 (2021). https://doi.org/10.1016/j.cam.2020.113328

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, T.: Numerical approximations of stochastic partial differential equations. In: Ph.D. thesis, M. Phil thesis, Hong Kong University of Science and Technology, Hong Kong (2000)

  36. Zhang, Z., Karniadakis, G.E.: Numerical methods for stochastic partial differential equations with white noise. Springer (2017)

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 11301392), Shanghai University Young Teachers’ Training and Funding Program (No. A-0201-24-065-38), and Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, Y. & Guan, X. A Semi-implicit Stochastic Multiscale Method for Radiative Heat Transfer Problem in Composite Materials. J Sci Comput 102, 10 (2025). https://doi.org/10.1007/s10915-024-02730-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02730-y

Keywords

Mathematics Subject Classification