Abstract
In this paper, we present and analyze a weighted residual a posteriori error estimate for a sparse optimal control problem. The problem involves a non-differentiable cost functional, a state equation with an integral fractional Laplacian, and control constraints. We employ subdifferentiation in non-differentiable convex analysis to obtain first-order optimality conditions. Piecewise linear polynomials are utilized to approximate the solutions of the state and adjoint equations. The control variable is discretized by the variational discretization method. Upper bounds for the a posteriori error estimate of the finite element approximation of the optimal control problem are derived. One challenge in devising a posteriori error estimators is poor properties of the residual. Namely, it is not necessarily in \(L^2(\varOmega )\). To address this issue, the weighted residual estimator incorporates additional weight computed as the power of the distance from the mesh skeleton. Furthermore, we propose an h-adaptive algorithm driven by the a posteriori error estimator, utilizing the Dörfler labeling criterion. The convergence analysis results show that the approximation sequence generated by the adaptive algorithm converges at the optimal algebraic rate. Finally, numerical experiments are conducted to validate the theoretical results.
Similar content being viewed by others
Data Availibility
Enquiries about data availability should be directed to the authors.
References
Clason, C., Kunisch, K.: A duality-based approach to ellipic control problems in nonreflexive Banach spaces. ESAIM Control Optim. Calc. Var. 17, 243–266 (2011)
Casas, E., Herzog, R., Wachsmuth, G.: Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122, 645–669 (2012)
Casas, E.: A review on sparse solutions in optimal control of partial differential equations. SeMA J. 74, 319–344 (2017)
Casas, E., Kunisch, K.: Stabilization by sparse controls for a class of semilinear parabolic equations. SIAM J. Control Optim. 55, 512–532 (2017)
Bersetche, F., Fuica, F., Otárola, E., Quero, D.: Fractional, semilinear, and sparse optimal control: a priori error bounds (2023). arXiv:2312.08335
Otárola, E.: Fractional semilinear optimal control: optimality conditions, convergence, and error analysis. SIAM J. Numer. Anal. 60(1), 1–27 (2022)
Otárola, E.: Error estimates for fractional semilinear optimal control on Lipschitz polytopes. Appl. Math. Optim. 88(2), 40 (2023)
Glusa, C., Otárola, E.: Error estimates for the optimal control of a parabolic fractional PDE. SIAM J. Numer. Anal. 59(2), 1140–1165 (2021)
Zhou, Z.J., Wang, Q.M.: Adaptive finite element approximation of optimal control problems with the integral fractional Laplacian. Adv. Comput. Math. 49(4), 59 (2023)
Benson, D.A., Wheatcraft, S., Meerschaert, M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1424 (2000)
Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58(11), 1100–1103 (1987)
Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E 48(3), 1683–1694 (1993)
Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with \(L^1\) cost functional. SIAM J. Optim. 22, 795–820 (2012)
Otárola, E., Salgado, A.J.: Sparse optimal control for fractional diffusion. Comput. Methods Appl. Math. 18(1), 95–110 (2018)
Stadler, G.: Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44, 159–181 (2009)
Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17, 858–866 (2011)
Allendes, A., Fuica, F., Otárola, E.: Adaptive finite element methods for sparse PDE-constrained optimization. IMA J. Numer. Anal. 40(3), 2106–2142 (2020)
Otárola, E.: An adaptive finite element method for the sparse optimal control of fractional diffusion. Numer. Methods Part. Differ. Equ. 36(2), 302–328 (2020)
Liu, W.B., Yan, N.N.: A posteriori error analysis for convex distributed optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)
Liu, W.B., Yan, N.N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39(1), 73–99 (2001)
Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002)
Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal problems governed by Stokes equations. SIAM J. Numer. Anal. 40, 1850–1869 (2003)
Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)
Liu, W.B., Yan, N.N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)
Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)
Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52, 1832–1861 (2014)
Gong, W., Yan, N.N.: Adaptive finite element method for elliptic optimal control problems: convergence and optimality. Numer. Math. 135, 1121–1170 (2017)
Leng, H.T., Chen, Y.P., Huang, Y.Q.: Equivalent a posteriori error estimates for elliptic optimal control problems with \(L^1\)-control cost. Comput. Math. Appl. 77(2), 342–356 (2019)
Schirotzek, W.: Nonsmooth Analysis. Universitext. Springer, Berlin (2007)
Bonito, A., Borthagaray, J.P., Nochetto, R.H., Otárola, E., Salgado, A.J.: Numerical methods for fractional diffusion. Comput. Vis. Sci. 19, 19–46 (2018)
Faustmann, M., Melenk, J.M., Praetorius, D.: Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Math. Comput. 90(330), 1557–1587 (2021)
Ioffe, A.D., Tichomirov, V.M.: Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979)
Carstensen, C., Feischl, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl. 67(6), 1195–1253 (2014)
Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)
Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)
Borthagaray, J.P., Leykekhman, D., Nochetto, R.H.: Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal. 59(4), 1918–1947 (2021)
Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32(7–9), 1245–1260 (2007)
Caffarelli, L.A., Stinga, P.R.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3), 767–807 (2016)
Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Part. Differ. Equ. 36(8), 1353–1384 (2011)
Banjai, L., Melenk, J.M., Nochetto, R.H., Otárola, E., Salgado, A.J., Schwab, Ch.: Tensor FEM for spectral fractional diffusion. Found. Comput. Math. 19, 901–962 (2019)
Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)
Acosta, G., Bersetche, F.M., Borthagaray, G.P.: A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74, 784–816 (2017)
Funding
The work was supported by the National Natural Science Foundation of China under Grant Nos. 11971276 and 12171287.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, F., Wang, Q. & Zhou, Z. Adaptive Finite Element Approximation of Sparse Optimal Control Problem with Integral Fractional Laplacian. J Sci Comput 102, 17 (2025). https://doi.org/10.1007/s10915-024-02739-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02739-3