Skip to main content

Adaptive Finite Element Approximation of Sparse Optimal Control Problem with Integral Fractional Laplacian

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present and analyze a weighted residual a posteriori error estimate for a sparse optimal control problem. The problem involves a non-differentiable cost functional, a state equation with an integral fractional Laplacian, and control constraints. We employ subdifferentiation in non-differentiable convex analysis to obtain first-order optimality conditions. Piecewise linear polynomials are utilized to approximate the solutions of the state and adjoint equations. The control variable is discretized by the variational discretization method. Upper bounds for the a posteriori error estimate of the finite element approximation of the optimal control problem are derived. One challenge in devising a posteriori error estimators is poor properties of the residual. Namely, it is not necessarily in \(L^2(\varOmega )\). To address this issue, the weighted residual estimator incorporates additional weight computed as the power of the distance from the mesh skeleton. Furthermore, we propose an h-adaptive algorithm driven by the a posteriori error estimator, utilizing the Dörfler labeling criterion. The convergence analysis results show that the approximation sequence generated by the adaptive algorithm converges at the optimal algebraic rate. Finally, numerical experiments are conducted to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availibility

Enquiries about data availability should be directed to the authors.

References

  1. Clason, C., Kunisch, K.: A duality-based approach to ellipic control problems in nonreflexive Banach spaces. ESAIM Control Optim. Calc. Var. 17, 243–266 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Casas, E., Herzog, R., Wachsmuth, G.: Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122, 645–669 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Casas, E.: A review on sparse solutions in optimal control of partial differential equations. SeMA J. 74, 319–344 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Casas, E., Kunisch, K.: Stabilization by sparse controls for a class of semilinear parabolic equations. SIAM J. Control Optim. 55, 512–532 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Bersetche, F., Fuica, F., Otárola, E., Quero, D.: Fractional, semilinear, and sparse optimal control: a priori error bounds (2023). arXiv:2312.08335

  6. Otárola, E.: Fractional semilinear optimal control: optimality conditions, convergence, and error analysis. SIAM J. Numer. Anal. 60(1), 1–27 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Otárola, E.: Error estimates for fractional semilinear optimal control on Lipschitz polytopes. Appl. Math. Optim. 88(2), 40 (2023)

    MathSciNet  MATH  Google Scholar 

  8. Glusa, C., Otárola, E.: Error estimates for the optimal control of a parabolic fractional PDE. SIAM J. Numer. Anal. 59(2), 1140–1165 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Zhou, Z.J., Wang, Q.M.: Adaptive finite element approximation of optimal control problems with the integral fractional Laplacian. Adv. Comput. Math. 49(4), 59 (2023)

    MathSciNet  MATH  Google Scholar 

  10. Benson, D.A., Wheatcraft, S., Meerschaert, M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1424 (2000)

    MATH  Google Scholar 

  11. Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58(11), 1100–1103 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E 48(3), 1683–1694 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with \(L^1\) cost functional. SIAM J. Optim. 22, 795–820 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Otárola, E., Salgado, A.J.: Sparse optimal control for fractional diffusion. Comput. Methods Appl. Math. 18(1), 95–110 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Stadler, G.: Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44, 159–181 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17, 858–866 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Allendes, A., Fuica, F., Otárola, E.: Adaptive finite element methods for sparse PDE-constrained optimization. IMA J. Numer. Anal. 40(3), 2106–2142 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Otárola, E.: An adaptive finite element method for the sparse optimal control of fractional diffusion. Numer. Methods Part. Differ. Equ. 36(2), 302–328 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Liu, W.B., Yan, N.N.: A posteriori error analysis for convex distributed optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Liu, W.B., Yan, N.N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39(1), 73–99 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal problems governed by Stokes equations. SIAM J. Numer. Anal. 40, 1850–1869 (2003)

    MATH  Google Scholar 

  23. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Liu, W.B., Yan, N.N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)

    MATH  Google Scholar 

  25. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52, 1832–1861 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Gong, W., Yan, N.N.: Adaptive finite element method for elliptic optimal control problems: convergence and optimality. Numer. Math. 135, 1121–1170 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Leng, H.T., Chen, Y.P., Huang, Y.Q.: Equivalent a posteriori error estimates for elliptic optimal control problems with \(L^1\)-control cost. Comput. Math. Appl. 77(2), 342–356 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Schirotzek, W.: Nonsmooth Analysis. Universitext. Springer, Berlin (2007)

    MATH  Google Scholar 

  30. Bonito, A., Borthagaray, J.P., Nochetto, R.H., Otárola, E., Salgado, A.J.: Numerical methods for fractional diffusion. Comput. Vis. Sci. 19, 19–46 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Faustmann, M., Melenk, J.M., Praetorius, D.: Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Math. Comput. 90(330), 1557–1587 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Ioffe, A.D., Tichomirov, V.M.: Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979)

    MATH  Google Scholar 

  33. Carstensen, C., Feischl, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl. 67(6), 1195–1253 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Borthagaray, J.P., Leykekhman, D., Nochetto, R.H.: Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal. 59(4), 1918–1947 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32(7–9), 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Caffarelli, L.A., Stinga, P.R.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3), 767–807 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Part. Differ. Equ. 36(8), 1353–1384 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Banjai, L., Melenk, J.M., Nochetto, R.H., Otárola, E., Salgado, A.J., Schwab, Ch.: Tensor FEM for spectral fractional diffusion. Found. Comput. Math. 19, 901–962 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Acosta, G., Bersetche, F.M., Borthagaray, G.P.: A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74, 784–816 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China under Grant Nos. 11971276 and 12171287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojie Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, Q. & Zhou, Z. Adaptive Finite Element Approximation of Sparse Optimal Control Problem with Integral Fractional Laplacian. J Sci Comput 102, 17 (2025). https://doi.org/10.1007/s10915-024-02739-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02739-3

Keywords

Mathematics Subject Classification