Abstract
In this article, a posteriori error analysis of the elliptic obstacle problem is addressed using hybrid high-order methods. The method involve cell unknowns represented by degree-r polynomials and face unknowns represented by degree-s polynomials, where \(r=0\) and s is either 0 or 1. The discrete obstacle constraints are specifically applied to the cell unknowns. The analysis hinges on the construction of a suitable Lagrange multiplier, a residual functional and a linear averaging map. The reliability and the efficiency of the proposed a posteriori error estimator is discussed, and the study is concluded by numerical experiments supporting the theoretical results.
Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Ainsworth, M., Oden, J.T.: \(A~ Posteriori\) error estimation in finite element analysis, Wiley-Blackwell, (2000)
Atkinson, K., Han, W.: Theoretical Numerical Analysis. A functional analysis framework, Third edition, Springer (2009)
Bartels, S., Carstensen, C.: Averaging techniques yield reliable \(a~ posteriori\) finite element error control for obstacle problems. Numerische Math. 99, 225–249 (2004)
Braess, D.: \(A~ posteriori\) error estimators for obstacle problems-another look. Numerische Math. 101, 415–421 (2005)
Brenner, S.C.: Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comput. 68, 25–53 (1999)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics. 3rd edn, pp. 15. Springer, New York (2008)
Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities, Part I. primal theory. Numerische Math. 28, 431–443 (1977)
Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)
Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196, 3682–3692 (2007)
Burman, E., Ern, A.: An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56(3), 1525–1546 (2018)
Burman, E., Cicuttin, M., Delay, G., Ern, A.: An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput. 43(2), 859–882 (2021)
Cangiani, A., Georgoulis, E.H., Houston, P.: hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)
Carstensen, C., Tran, N.T.: Unstabilized hybrid high-order method for a class of degenerate convex minimization problems. SIAM J. Numer. Anal. 59, 1348–1373 (2021)
Carstensen, C., Tran, N.T.: Convergent adaptive hybrid higher-order schemes for convex minimization. Numerische Math. 151, 329–367 (2022)
Chaumont-Frelet, T., Ern, A., Lemaire, S., Valentin, F.: Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods. ESAIM Math. Model. Numer. Anal. 56, 261–285 (2022)
Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numerische Math. 84(4), 527–548 (2000)
Chen, L., Wang, J., Ye, X.: A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 59(2), 496–511 (2014)
Ciarlet, P.G.: The finite element method for elliptic problems, SIAM, (2002)
Cicuttin, M., Ern, A., Gudi, T.: Hybrid high-order methods for the elliptic obstacle problem, J. Sci. Comput. 83(8) (2020)
Cicuttin, M., Ern, A., Pignet, N.: Hybrid high-order methods. A primer with application to solid mechanics. Springer Briefs in Mathematics. Springer, Cham, Switzerland (2021)
Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51(1), 676–693 (2013)
Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50, 635–650 (2016)
Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, Springer (2012)
Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)
Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015)
Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)
Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016)
Di Pietro, D.A., Specogna, R.: An a posteriori-driven adaptive mixed high-order method with application to electrostatics. J. Comput. Phys. 326, 35–55 (2016)
Di Pietro, D.A., Krell, S.: A hybrid high-order method for the steady incompressible Navier Stokes problem. J. Sci. Comput. 74(3), 1677–1705 (2018)
Di Pietro, D.A., Ern, A., Formaggia, L.: Numerical methods for PDEs state of the art techniques, Springer (2018)
Di Pietro, D.A., Droniou, J.: The hybrid high-order method for polytopal meshes: design, analysis, and applications. MS &A. Modeling, simulation and applications, vol. 19. Springer, Cham, Switzerland (2020)
Dörlfer, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)
Eymard, R., Gallouet, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)
Falk, R.S.: Error estimation for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)
Gaddam, S., Gudi, T.: Inhomogeneous Dirichlet boundary condition in the \(a~ posteriori\) error control of the obstacle problem. Comput. Math. Appl. 75(7), 2311–2327 (2018)
Glowinski, R.: Lectures on numerical methods for non-linear variational problems, Springer (2008)
Gudi, T., Porwal, K.: \(A~ posteriori\) error control of discontinuous Galerkin methods for elliptic obstacle problems. Math. Comput. 83(286), 579–602 (2014)
Gudi, T., Porwal, K.: A reliable residual based \(a~ posteriori\) error estimator for quadratic finite element method for the elliptic obstacle problem. Comput. Methods Appl. Math. 15, 145–160 (2015)
Hintermuller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)
Khandelwal, R., Porwal, K., Singla, R.: Supremum-norm \(a~ posteriori\) error control of quadratic discontinuous Galerkin methods for the obstacle problem. Comput. Math. Appl. 137, 147–171 (2023)
Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. SIAM, Philadelphia (2000)
Lemaire, S.: Bridging the hybrid high-order and virtual element methods. IMA J. Numer. Anal. 41, 549–593 (2021)
Nochetto, R., Petersdorff, T.V., Zhang, C.S.: A posteriori error analysis for a class of integral equations and variational inequalities. Numerische Math. 116, 519–552 (2010)
Oswald, P.: On a BPX-preconditioner for P1 elements. Comput. (Wien. Print) 51(2), 125–133 (1993)
Porwal, K., Singla, R.: Pointwise adaptive non-conforming finite element method for the obstacle problem. Comput. Appl. Math. 43(150) (2024)
Stampacchia, G.: On some regular multiple integral problems in the calculus of variations. J. Math. Mech. 16(4), 875–908 (1967)
Veeser, A.: Efficient and reliable \(a~ posteriori\) error estimates for elliptic obstacle problems. SIAM J. Numer. Anal. 39, 146–167 (2001)
Verfurth, R.: A review of \(A~ posteriori\) error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Stuttgart, Germany (1996)
Wang, L.: On the quadratic finite element approximation to the obstacle problem. Numerische Math. 92, 771–778 (2002)
Zhang, Y., Mei, L., Wang, G.: A posteriori error analysis of the hybrid high-order method for the Stokes problem. J. Sci. Comput. 96–74 (2023)
Funding
The second author’s work is supported by IIT Delhi institute fellowship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
This manuscript has no associated data. The authors have no Conflict of interest, financial or otherwise.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Porwal, K., Singla, R. A Posteriori Error Analysis of Hybrid High-Order Methods for the Elliptic Obstacle Problem. J Sci Comput 102, 15 (2025). https://doi.org/10.1007/s10915-024-02744-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02744-6
Keywords
- Hybrid high-order method
- Obstacle problem
- Discontinuous-skeletal method
- Variational inequalities
- A posteriori error estimates