Abstract
Reaction-diffusion equations on surfaces are widely used for modeling various phenomena in biology. This paper presents a novel numerical method for solving a surface reaction-diffusion system coupled with the evolution of the surface. The coupled system has been used to model the growth of hard tumors. A stabilized trace finite element method is used to discretize the reaction-diffusion system on evolving surfaces. The surface motion is computed using a diffusion-generated method for the level-set function, which involves solving a heat equation in each time step followed by a redistance operation. Both the trace finite element space for the reaction-diffusion system and the finite element space for the level-set function are defined in a narrow band region near the surface on a bulk mesh. The method is fully decoupled and allows for easy handling of topology changes. Numerical experiments demonstrate the efficiency of the proposed method for solving this complex problem.








Similar content being viewed by others
Data availability
Enquiries about data availability should be directed to the authors.
Notes
We define the mean curvature as the sum of the principal curvatures rather than the arithmetic mean.
References
Turing, A.M.: The chemical basis of morphogenesis. Bull. Math. Biol. 52(1), 153–197 (1990)
Meinhardt, H.: The Algorithmic Beauty of Sea Shells. Springer, Cham (2009)
Sanderson, A.R., Kirby, R.M., Johnson, C.R., Yang, L.: Advanced reaction-diffusion models for texture synthesis. J. Graph. Tools 11(3), 47–71 (2006)
Sardet, C., Roegiers, F., Dumollard, R., Rouviere, C., McDougall, A.: Calcium waves and oscillations in eggs. Biophys. Chem. 72(1–2), 131–140 (1998)
Watanabe, M., Iwashita, M., Ishii, M., Kurachi, Y., Kawakami, A., Kondo, S., Okada, N.: Spot pattern of leopard danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep. 7(9), 893–897 (2006)
Economou, A.D., Ohazama, A., Porntaveetus, T., Sharpe, P.T., Kondo, S., Basson, M.A., Gritli-Linde, A., Cobourne, M.T., Green, J.: Periodic stripe formation by a turing mechanism operating at growth zones in the mammalian palate. Nat. Genet. 44(3), 348–351 (2012)
Murray, J.D.: Mathematical Biology: I & II. Springer, Cham (2002)
Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12(1), 30–39 (1972)
Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81(3), 389–400 (1979)
Chaplain, M.A., Ganesh, M., Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42(5), 387–423 (2001)
Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289 (2013)
Bonito, A., Demlow, A., Nochetto, R.H.: Finite element methods for the Laplace–Beltrami operator. In: Handbook of Numerical Analysis, vol. 21, pp. 1–103. Elsevier, Amsterdam (2020)
Xu, J.-J., Zhao, H.-K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19, 573–594 (2003)
Du, Q., Gunzburger, M.D., Ju, L.: Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Eng. 192(35–36), 3933–3957 (2003)
Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47(5), 3339–3358 (2009)
Leung, S., Lowengrub, J., Zhao, H.: A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J. Comput. Phys. 230(7), 2540–2561 (2011)
Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35(3), A1461–A1486 (2013)
Dedè, L., Quarteroni, A.: Isogeometric analysis for second order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 284, 807–834 (2015)
Li, Z., Shi, Z.: A convergent point integral method for isotropic elliptic equations on a point cloud. Multiscale Model. Simul. 14(2), 874–905 (2016)
MacDonald, G., Mackenzie, J.A., Nolan, M., Insall, R.H.: A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis. J. Comput. Phys. 309, 207–226 (2016)
Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J. Sci. Comput. 39(5), A2129–A2151 (2017)
Bachini, E., Farthing, M.W., Putti, M.: Intrinsic finite element method for advection-diffusion-reaction equations on surfaces. J. Comput. Phys. 424, 109827 (2021)
Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)
Dziuk, Gerhard, Elliott, Charles M.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)
Elliott, C.M., Stinner, B., Venkataraman, C.: Modelling cell motility and chemotaxis with evolving surface finite elements. J. R. Soc. Interface 9(76), 3027–3044 (2012)
Elliott, C.M., Styles, V.: An ALE ESFEM for solving PDEs on evolving surfaces. Milan J. Math. 80(2), 469–501 (2012)
Olshanskii, M.A., Reusken, A., Xu, X.: An Eulerian space-time finite element method for diffusion problems on evolving surfaces. SIAM J. Numer. Anal. 52(3), 1354–1377 (2014)
Olshanskii, M.A., Xu, X.: A trace finite element method for PDEs on evolving surfaces. SIAM J. Sci. Comput. 39(4), A1301–A1319 (2017)
Lehrenfeld, C., Olshanskii, M.A., Xu, X.: A stabilized trace finite element method for partial differential equations on evolving surfaces. SIAM J. Numer. Anal. 56(3), 1643–1672 (2018)
Frittelli, M., Madzvamuse, A., Sgura, I., Venkataraman, C.: Lumped finite elements for reaction-cross-diffusion systems on stationary surfaces. Comput. Math. Appl. 74(12), 3008–3023 (2017)
Frittelli, M., Madzvamuse, A., Sgura, I., Venkataraman, C.: Preserving invariance properties of reaction-diffusion systems on stationary surfaces. IMA J. Numer. Anal. 39(1), 235–270 (2019)
Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63(6), 1095–1119 (2011)
Olshanskii, M., Xu, X., Yushutin, V.: A finite element method for Allen-Cahn equation on deforming surface. Comput. Math. Appl. 90, 148–158 (2021)
Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)
Esedoglu, S., Ruuth, S., Tsai, R.: Diffusion generated motion using signed distance functions. J. Comput. Phys. 229(4), 1017–1042 (2010)
Lu, S., Xu, X.: An efficient diffusion generated motion method for wetting dynamics. J. Comput. Phys. 441, 110476 (2021)
Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)
Gross, S., Reusken, A.: Numerical Methods for Two-Phase Incompressible Flows, vol. 40. Springer, Cham (2011)
Grande, J., Reusken, A.: A higher order finite element method for partial differential equations on surfaces. SIAM J. Numer. Anal. 54(1), 388–414 (2016)
Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput.ng 26(4), 1192–1213 (2005)
Lu, S., Xu, X.: Numerical investigations on trace finite element methods for the Laplace-Beltrami eigenvalue problem. J. Sci. Comput. 97(1), 12 (2023)
Chrysafinos, K., Karatzas, E.N., Kostas, D.: Stability and error estimates of fully discrete schemes for the Brusselator system. SIAM J. Numer. Anal. 57(2), 828–853 (2019)
Kovács, B., Li, B., Lubich, C., Power, G., Christian, A.: Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numer. Math. 137, 643–689 (2017)
Grande, J.R., Lehrenfeld, C., Reusken, A.: Analysis of a high-order trace finite element method for PDEs on level set surfaces. SIAM J. Numer. Anal. 56(1), 228–255 (2018)
Larson, M.G., Zahedi, S.: Stabilization of high order cut finite element methods on surfaces. IMA J. Numer. Anal. 40(3), 1702–1745 (2020)
Esedoglu, S., Guo, J.: A monotone, second order accurate scheme for curvature motion. SIAM J. Numer. Anal. 60(5), 2435–2447 (2022)
Nishide, R., Ishihara, S.: Pattern propagation driven by surface curvature. Phys. Rev. Lett. 128(22), 224101 (2022)
Acknowledgements
We thank Maxim A. Olshanskii for helpful discussions. We are also grateful to the anonymous referees whose comments have served to greatly improve various parts of the paper.
Funding
This work is partially supported by the National Natural Science Foundation of China (11971469 and 12371415) and by Beijing Natural Science Foundation (Grant No. Z240001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lu, S., Xu, X. A Narrow Band Numerical Method for a Surface Reaction-Diffusion System Coupled with Surface Motion. J Sci Comput 103, 2 (2025). https://doi.org/10.1007/s10915-024-02772-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02772-2