Skip to main content
Log in

A Narrow Band Numerical Method for a Surface Reaction-Diffusion System Coupled with Surface Motion

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Reaction-diffusion equations on surfaces are widely used for modeling various phenomena in biology. This paper presents a novel numerical method for solving a surface reaction-diffusion system coupled with the evolution of the surface. The coupled system has been used to model the growth of hard tumors. A stabilized trace finite element method is used to discretize the reaction-diffusion system on evolving surfaces. The surface motion is computed using a diffusion-generated method for the level-set function, which involves solving a heat equation in each time step followed by a redistance operation. Both the trace finite element space for the reaction-diffusion system and the finite element space for the level-set function are defined in a narrow band region near the surface on a bulk mesh. The method is fully decoupled and allows for easy handling of topology changes. Numerical experiments demonstrate the efficiency of the proposed method for solving this complex problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Notes

  1. We define the mean curvature as the sum of the principal curvatures rather than the arithmetic mean.

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Bull. Math. Biol. 52(1), 153–197 (1990)

    Article  MATH  Google Scholar 

  2. Meinhardt, H.: The Algorithmic Beauty of Sea Shells. Springer, Cham (2009)

    Book  MATH  Google Scholar 

  3. Sanderson, A.R., Kirby, R.M., Johnson, C.R., Yang, L.: Advanced reaction-diffusion models for texture synthesis. J. Graph. Tools 11(3), 47–71 (2006)

    Article  MATH  Google Scholar 

  4. Sardet, C., Roegiers, F., Dumollard, R., Rouviere, C., McDougall, A.: Calcium waves and oscillations in eggs. Biophys. Chem. 72(1–2), 131–140 (1998)

    Article  Google Scholar 

  5. Watanabe, M., Iwashita, M., Ishii, M., Kurachi, Y., Kawakami, A., Kondo, S., Okada, N.: Spot pattern of leopard danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep. 7(9), 893–897 (2006)

    Article  Google Scholar 

  6. Economou, A.D., Ohazama, A., Porntaveetus, T., Sharpe, P.T., Kondo, S., Basson, M.A., Gritli-Linde, A., Cobourne, M.T., Green, J.: Periodic stripe formation by a turing mechanism operating at growth zones in the mammalian palate. Nat. Genet. 44(3), 348–351 (2012)

    Article  Google Scholar 

  7. Murray, J.D.: Mathematical Biology: I & II. Springer, Cham (2002)

    Book  MATH  Google Scholar 

  8. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12(1), 30–39 (1972)

    Article  MATH  Google Scholar 

  9. Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81(3), 389–400 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaplain, M.A., Ganesh, M., Graham, I.G.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42(5), 387–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonito, A., Demlow, A., Nochetto, R.H.: Finite element methods for the Laplace–Beltrami operator. In: Handbook of Numerical Analysis, vol. 21, pp. 1–103. Elsevier, Amsterdam (2020)

    MATH  Google Scholar 

  13. Xu, J.-J., Zhao, H.-K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19, 573–594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Q., Gunzburger, M.D., Ju, L.: Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Eng. 192(35–36), 3933–3957 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47(5), 3339–3358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leung, S., Lowengrub, J., Zhao, H.: A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J. Comput. Phys. 230(7), 2540–2561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35(3), A1461–A1486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dedè, L., Quarteroni, A.: Isogeometric analysis for second order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 284, 807–834 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Z., Shi, Z.: A convergent point integral method for isotropic elliptic equations on a point cloud. Multiscale Model. Simul. 14(2), 874–905 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. MacDonald, G., Mackenzie, J.A., Nolan, M., Insall, R.H.: A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis. J. Comput. Phys. 309, 207–226 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J. Sci. Comput. 39(5), A2129–A2151 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bachini, E., Farthing, M.W., Putti, M.: Intrinsic finite element method for advection-diffusion-reaction equations on surfaces. J. Comput. Phys. 424, 109827 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dziuk, Gerhard, Elliott, Charles M.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Elliott, C.M., Stinner, B., Venkataraman, C.: Modelling cell motility and chemotaxis with evolving surface finite elements. J. R. Soc. Interface 9(76), 3027–3044 (2012)

    Article  MATH  Google Scholar 

  26. Elliott, C.M., Styles, V.: An ALE ESFEM for solving PDEs on evolving surfaces. Milan J. Math. 80(2), 469–501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Olshanskii, M.A., Reusken, A., Xu, X.: An Eulerian space-time finite element method for diffusion problems on evolving surfaces. SIAM J. Numer. Anal. 52(3), 1354–1377 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Olshanskii, M.A., Xu, X.: A trace finite element method for PDEs on evolving surfaces. SIAM J. Sci. Comput. 39(4), A1301–A1319 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lehrenfeld, C., Olshanskii, M.A., Xu, X.: A stabilized trace finite element method for partial differential equations on evolving surfaces. SIAM J. Numer. Anal. 56(3), 1643–1672 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Frittelli, M., Madzvamuse, A., Sgura, I., Venkataraman, C.: Lumped finite elements for reaction-cross-diffusion systems on stationary surfaces. Comput. Math. Appl. 74(12), 3008–3023 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Frittelli, M., Madzvamuse, A., Sgura, I., Venkataraman, C.: Preserving invariance properties of reaction-diffusion systems on stationary surfaces. IMA J. Numer. Anal. 39(1), 235–270 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63(6), 1095–1119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Olshanskii, M., Xu, X., Yushutin, V.: A finite element method for Allen-Cahn equation on deforming surface. Comput. Math. Appl. 90, 148–158 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Esedoglu, S., Ruuth, S., Tsai, R.: Diffusion generated motion using signed distance functions. J. Comput. Phys. 229(4), 1017–1042 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lu, S., Xu, X.: An efficient diffusion generated motion method for wetting dynamics. J. Comput. Phys. 441, 110476 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  38. Gross, S., Reusken, A.: Numerical Methods for Two-Phase Incompressible Flows, vol. 40. Springer, Cham (2011)

    MATH  Google Scholar 

  39. Grande, J., Reusken, A.: A higher order finite element method for partial differential equations on surfaces. SIAM J. Numer. Anal. 54(1), 388–414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput.ng 26(4), 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lu, S., Xu, X.: Numerical investigations on trace finite element methods for the Laplace-Beltrami eigenvalue problem. J. Sci. Comput. 97(1), 12 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chrysafinos, K., Karatzas, E.N., Kostas, D.: Stability and error estimates of fully discrete schemes for the Brusselator system. SIAM J. Numer. Anal. 57(2), 828–853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kovács, B., Li, B., Lubich, C., Power, G., Christian, A.: Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numer. Math. 137, 643–689 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Grande, J.R., Lehrenfeld, C., Reusken, A.: Analysis of a high-order trace finite element method for PDEs on level set surfaces. SIAM J. Numer. Anal. 56(1), 228–255 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Larson, M.G., Zahedi, S.: Stabilization of high order cut finite element methods on surfaces. IMA J. Numer. Anal. 40(3), 1702–1745 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Esedoglu, S., Guo, J.: A monotone, second order accurate scheme for curvature motion. SIAM J. Numer. Anal. 60(5), 2435–2447 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nishide, R., Ishihara, S.: Pattern propagation driven by surface curvature. Phys. Rev. Lett. 128(22), 224101 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Maxim A. Olshanskii for helpful discussions. We are also grateful to the anonymous referees whose comments have served to greatly improve various parts of the paper.

Funding

This work is partially supported by the National Natural Science Foundation of China (11971469 and 12371415) and by Beijing Natural Science Foundation (Grant No. Z240001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Xu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Xu, X. A Narrow Band Numerical Method for a Surface Reaction-Diffusion System Coupled with Surface Motion. J Sci Comput 103, 2 (2025). https://doi.org/10.1007/s10915-024-02772-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02772-2

Keywords