Skip to main content
Log in

A Grid-Overlay Finite Difference Method for Inhomogeneous Dirichlet Problems of the Fractional Laplacian on Arbitrary Bounded Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A grid-overlay finite difference method (GoFD) was proposed recently for the numerical solution of homogeneous Dirichlet boundary value problems of the fractional Laplacian on arbitrary bounded domains and shown to have advantages of both finite difference and finite element methods, including its efficient implementation through the fast Fourier transform and ability to work for complex domains and with mesh adaptation. The purpose of this work is to study GoFD for problems with inhomogeneous Dirichlet boundary conditions. The main challenge with inhomogeneous Dirichlet boundary conditions comes from the calculation of the fractional Laplacian of the exterior function that is defined in the whole space. In this work the whole space is truncated into a rectangular or cubic bounded domain and a finite difference approximation on a uniform grid is used to approximate the fractional Laplacian of the exterior function. This approximation can be carried out efficiently through the fast Fourier transform. Moreover, the error for the domain truncation is analyzed for exterior functions being bounded or with algebraic or exponential decay. The estimates are then used to determine the size of the truncated domain and analyze the complexity of computing the fractional Laplacian of the exterior function. Numerical results for a selection of one- and two-dimensional examples are presented to demonstrate the convergence of GoFD and effectiveness of mesh adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2D homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74, 784–816 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acosta, G., Borthagaray, J.P., Heuer, N.: Finite element approximations of the nonhomogeneous fractional Dirichlet problem. IMA J. Numer. Anal. 39, 1471–1501 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Glusa, C.: Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Engrg. 327, 4–35 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ainsworth, M., Glusa, C.: Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains. In: Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, vol. 1, no. 2, pp. 17–57. Springer, Cham (2018)

  6. Antil, H., Brown, T., Khatri, R., Onwunta, A., Verma, D., Warma, M.: Chapter 3—Optimal control, numerics, and applications of fractional PDEs. In: Handbook of Numerical Analysis, vol. 23, pp. 87–114 (2022)

  7. Antil, H., Dondl, P., Striet, L.: Approximation of integral fractional Laplacian and fractional PDEs via sinc-basis. SIAM J. Sci. Comput. 43, A2897–A2922 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antil, H., Pfefferer, J., Rogovs, S.: Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization. Commun. Math. Sci. 16, 1395–1426 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Antil, H., Verma, D., Warma, M.: External optimal control of fractional parabolic PDEs. ESAIM Control Optim. Calc. Var. 26, 20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142, 235–278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borthagaray, J.P., Del Pezzo, L.M., Martínez, S.: Finite element approximation for the fractional eigenvalue problem. J. Sci. Comput. 77, 308–329 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borthagaray, J.P., Leykekhman, D., Nochetto, R.H.: Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal. 59, 1918–1947 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borthagaray, J.P., Nochetto, R.H.: Constructive approximation on graded meshes for the integral fractional Laplacian. Constr. Approx. 57, 463–487 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal. 56, 1243–1272 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, N., Sun, H.-W., Wang, H.: A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains. Comput. Appl. Math. 38, 1–13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Q., Ju, L., Lu, J.: A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. Math. Comput. 88, 123–147 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45, 427–448 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Faustmann, M., Karkulik, M., Melenk, J.M.: Local convergence of the FEM for the integral fractional Laplacian. SIAM J. Numer. Anal. 60, 1055–1082 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grube,F., Kassmann,M.: Robust nonlocal trace and extension theorems. arXiv:2305.05735

  22. Hao, Z., Zhang, Z., Du, R.: Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 424, 109851 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang,W.: An introduction to MMPDElab. arXiv:1904.05535 (2019)

  24. Huang, W., Kamenski, L.: A geometric discretization and a simple implementation for variational mesh generation and adaptation. J. Comput. Phys. 301, 322–337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle. SIAM J. Numer. Anal. 31, 709–730 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, W., Russell, R.D.: Adaptive moving mesh methods. In: Applied Mathematical Sciences Series, vol. 174. Springer, New York (2011)

  27. Huang, W., Shen, J.: A grid-overlay finite difference method for the fractional Laplacian on arbitrary bounded domains. SIAM J. Sci. Comput. 46, A744–A769 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, W., Shen, J.: Approximating and preconditioning the stiffness matrix in the GoFD approximation of the fractional Laplacian. Commun. Comput. Phys. (to appear). arXiv:2407.07199

  29. Huang, W., Sun, W.: Variational mesh adaptation II: error estimates and monitor functions. J. Comput. Phys. 184, 619–648 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang, Y., Oberman, A.: Finite difference methods for fractional Laplacians. arXiv:1611.00164 (2016)

  32. Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 8, 323–341 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Kwaśnicki,M.: Fractional Laplace operator and its properties. In: Handbook of Fractional Calculus with Applications, vol. 1, pp. 159–193. De Gruyter, Berlin (2019)

  34. Kyprianou, A.E., Osojnik, A., Shardlow, T.: Unbiased “walk-on-spheres’’ Monte Carlo methods for the fractional Laplacian. IMA J. Numer. Anal. 38, 1550–1578 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, H., Liu, R., Wang, L.-L.: Efficient hermite spectral-Galerkin methods for nonlocal diffusion equations in unbounded domains. Numer. Math. Theory Methods Appl. 15, 1009–1040 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lischke, A., Pang, G., Gulian, M., et al.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Minden, V., Ying, L.: A simple solver for the fractional Laplacian in multiple dimensions. SIAM J. Sci. Comput. 42, A878–A900 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 48391 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ortigueira, M.D.: Fractional central differences and derivatives. J. Vib. Control 14, 1255–1266 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pang, G., Chen, W., Fu, Z.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pang, H.-K., Sun, H.-W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231(2), 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Song, F., Xu, C., Karniadakis, G.E.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, J., Nie, D., Deng, W.: Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. BIT 61, 1421–1452 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

W.H. was supported in part by the University of Kansas General Research Fund FY23 and the Simons Foundation through Grant MP-TSM-00002397. J.S. was supported in part by the National Natural Science Foundation of China through Grant [12101509]. The authors are grateful to the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinye Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Shen, J. A Grid-Overlay Finite Difference Method for Inhomogeneous Dirichlet Problems of the Fractional Laplacian on Arbitrary Bounded Domains. J Sci Comput 102, 50 (2025). https://doi.org/10.1007/s10915-024-02782-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02782-0

Keywords

Mathematics Subject Classification