Skip to main content
Log in

Flexible Operator Splitting Methods for Solving Absolute Value Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The operator splitting methods exhibit excellent ability in solving large-scale absolute value equations, especially the inexact versions. However, two important parameters that play a crucial role in numerical performance are not judiciously addressed. One is the parameter in the residual, which is fixed as a constant. The other one is the error tolerance parameter in the inaccuracy criterion, which is hard to determine since it involves the estimation of an error bound constant. In this paper, by using a different potential function in convergence analysis, we design two new error criteria whose parameters do not rely on any estimation of other parameters. The algorithms are flexible in the sense that the accuracy criterion is relative, and the parameter is arbitrary in an interval. Our methods avoid the task of presetting a sequence of parameters in the absolute error accuracy criterion and the estimation of an upper bound involving the input data in other relative accuracy criteria. We also present the linear rate of convergence of proposed algorithms under the error bound condition. We report some promising numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Rohn, J.: A theorem of the alternatives for the equation \(Ax+ B|x|= b\). Linear Multilinear Algebra 52(6), 421–426 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2–3), 359–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bu, F., Ma, C.F.: The tensor splitting methods for solving tensor absolute value equation. Comput. Appl. Math. 39, 1–11 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Du, S.Q., Zhang, L.P., Chen, C.Y., et al.: Tensor absolute value equations. Science China Math. 61, 1695–1970 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ling, C., Yan, W.J., He, H.J., et al.: Further study on tensor absolute value equations. Science China Math. 63, 2156–2173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Miao, X.H., Yang, J.T., Hu, S.L.: A generalized Newton method for absolute value equations associated with circular cones. Appl. Math. Comput. 269, 155–168 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Hu, S.L., Huang, Z.H., Zhang, Q.: A generalized Newton method for absolute value equations associated with second-order cones. J. Comput. Appl. Math. 235(5), 1490–1501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nguyen, C.T., Saheya, B., Chang, Y.L., et al.: Unified smoothing functions for absolute value equation associated with second-order cones. Appl. Numer. Math. 135(5), 206–227 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rohn, J.: On unique solvability of the absolute value equation. Optim. Lett. 3(4), 603–606 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, S.L., Li, C.X.: The unique solution of the absolute value equations. Appl. Math. Lett. 76, 195–200 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, S.L., Li, C.X.: A note on unique solvability of the absolute value equation. Optim. Lett. 14(7), 1957–1960 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1, 3–8 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zamani, M., Hladik, M.: A new concave minimization algorithm for the absolute value equation solution. Optim. Lett. 15, 2241–2254 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mangasarian, O.L.: Knapsack feasibility as an absolute value equation solvable by successive linear programming. Optim. Lett. 3, 161–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zainali, N., Lotfi, T.: On developing a stable and quadratic convergent method for solving absolute value equation. J. Comput. Appl. Math. 330, 742–747 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, C., Wei, Q.J.: Global and finite convergence of a generalized newton method for absolute value equations. J. Optim. Theory Appl. 143, 391–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lian, Y.Y., Li, C.X., Wu, S.L.: Weaker convergent results of the generalized newton method for the generalized absolute value equations. J. Comput. Appl. Math. 338, 221–226 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bello Cruz, J.Y., Ferreira, O.P., Prudente, L.F.: On the global convergence of the inexact semi-smooth Newton method for absolute value equation. Comput. Optim. Appl. 65(1), 93–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ke, Y.F., Ma, C.F.: SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 311, 195–202 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Wang, A., Cao, Y., Chen, J.X.: Modified Newton-type iteration methods for generalized absolute value equations. J. Optim. Theory Appl. 181(1), 216–230 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Salkuyeh, D.K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8(8), 2191–2202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48(1), 45–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing functions. J. Comput. Appl. Math. 327, 196–207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, X.Q., Zhang, Y.: A smoothing-type algorithm for absolute value equations. J. Ind. Manage. Optim. 9(4), 789–798 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hashemi, F., Ketabchi, S.: Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations. Numer. Algebra Control Optim. 10(1), 13–21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saheya, B., Yu, C.H., Chen, J.S.: Numerical comparisons based on four smoothing functions for absolute value equation. J. Appl. Math. Comput. 56, 131–149 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, S.L., Huang, Z.H.: A note on absolute value equations. Optim. Lett. 4(3), 417–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. He, B.S.: Inexact implicit methods for monotone general variational inequalities. Math. Program. 86(1), 199–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, C.R., Yu, D.M., Han, D.R.: Exact and inexact Douglas–Rachford splitting methods for solving large-scale sparse absolute value equations. IMA J. Numer. Anal. 43(2), 1036–1060 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  34. Luo, Z.Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46(1), 157–178 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, X.Y., Ng, K.F.: Metric subregularity of piecewise linear multifunctions and applications to piecewise linear multiobjective optimization. SIAM J. Optim. 24(1), 154–174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Han, D.R.: Inexact operator splitting methods with selfadaptive strategy for variational inequality problems. J. Optim. Theory Appl. 132(2), 227–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ge, Z.L., Qian, G., Han, D.R.: Global convergence of an inexact operator splitting method for monotone variational inequalities. J. Ind. Manage. Optim. 7(4), 1013–1026 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, M., Bnouhachem, A.: A modified inexact operator splitting method for monotone variational inequalities. J. Global Optim. 41(3), 417–426 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. He, B.S., Liao, L.Z., Wang, S.L.: Self-adaptive operator splitting methods for monotone variational inequalities. Numer. Math. 94(4), 715–737 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  41. He, B.S., Yang, H., Wang, S.L.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106(2), 337–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, W.X., Han, D.R., Li, Z.B.: A self-adaptive projection method for solving the multiple-sets split feasibility problem. Inverse Prob. 25(11), 115001 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  44. Han, D.R., He, B.S.: A new accuracy criterion for approximate proximal point algorithms. J. Math. Anal. Appl. 263(2), 343–354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhu, T., Yu, Z.G.: A simple proof for some important properties of the projection mapping. Math. Inequal. Appl. 7, 453–456 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Hladík, M., Moosaei, D., Hashemi, F. et al.: An overview of absolute value equations: From theory to solution methods and challenges. arXiv:2404.06319v1 (2024)

  47. Robbins, H., Siegmund, D.: A convergence theorem for nonnegative almost supermartingales and some applications. In: Optimizing Methods in Statistics, pp. 233–257. Academic Press, UK (1971)

  48. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yong, L.: Iteration method for absolute value equation and applications in two-point boundary value problem of linear differential equation. J. Interdiscip. Math. 18(4), 355–374 (2015)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deren Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Ministry of Science and Technology of China (No. 2021YFA1003600), the R&D project of Pazhou Lab (Huangpu) (2023K0604), and the NSFC grants 12131004 and 12126603.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Han, D. Flexible Operator Splitting Methods for Solving Absolute Value Equations. J Sci Comput 103, 6 (2025). https://doi.org/10.1007/s10915-025-02809-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02809-0

Keywords

Mathematics Subject Classification