Skip to main content
Log in

An Enhanced Reduced-Order Model Based on Dynamic Mode Decomposition for Advection-Dominated Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Dynamic mode decomposition (DMD), as an equation-free data-driven approach, is widely employed in the construction of reduced-order models (ROMs). However, as an SVD-based approach, DMD faces significant challenges when applied to advection-dominated problems due to the slow decay of its Kolmogorov n-width. This is also a common limitation among many traditional data-driven ROMs. To address these challenges, we introduce an enhanced DMD method based on coordinate transformations, called CT-DMD. In the CT-DMD approach, a mapping is first constructed based on the characteristic lines of the problems and then used to perform coordinate transformation. In the new coordinate system, the translation characteristics in the snapshots can be eliminated. In order to construct a DMD model using the solutions under the transformed coordinate system, interpolation methods are applied to ensure that the transformed solutions align at consistent spatial coordinates. These interpolated solutions can be fed into the DMD algorithm to construct the approximate solutions which should be mapped back to the original coordinate system. Finally, the approximate solutions in the original coordinate can be obtained by the interpolation methods. The good performance of CT-DMD is verified by comparing with that of the standard DMD method through several numerical tests. Additionally, the impact of the number of DMD modes and the interpolation methods on the accuracy of the CT-DMD model is explored in the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on a reasonable request.

References

  1. Bear, J.: Dynamics of Fluids in Porous Media. New York (2013)

  2. Cheung, S.W., Choi, Y., Copeland, D.M., Huynh, K.: Local Lagrangian reduced-order modeling for the rayleigh-taylor instability by solution manifold decomposition. J. Comput. Phys. 472, 111655 (2023)

    MathSciNet  MATH  Google Scholar 

  3. Eivazi, H., Veisi, H., Naderi, M.H., Esfahanian, V.: Deep neural networks for nonlinear model order reduction of unsteady flows. Phys. Fluids 32, 105104 (2020)

    MATH  Google Scholar 

  4. Fresca, S., Dede’, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. J. Sci. Comput. 87(2), 1–36 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Fresca, S., Manzoni, A.: POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. Comput. Methods. Appl. Mech. Eng. 388, 114181 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Gao, Z., Lin, Y., Sun, X., Zeng, X.: A reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest-neighbors regression. J. Comput. Phys. 452, 110907 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Gao, Z., Liu, Q., Hesthaven, J.S., Wang, B., Don, W.S., Wen, X.: Non-intrusive reduced order modeling of convection dominated flows using artificial neural networks with application to Rayleigh-Taylor instability. Commun. Comput. Phys. 30(1), 97–123 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Giere, S., Iliescu, T., John, V., Wells, D.: SUPG reduced order models for convection-dominated convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Engrg. 289, 454–474 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Gowrachari, H., Stabile, G., Rozza, G.: Model Reduction for Transport-Dominated Problems via Cross-Correlation Based Snapshot Registration. arXiv:abs/2501.01299v1 (2025)

  10. Gracia, J.L., O’Riordan, E.: A singularly perturbed convection-diffusion problem with a moving interior layer. Int. J. Numer. Anal. Model. 9(4), 823–843 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Greif, C., Urban, K.: Decay of the kolmogorov n-width for wave problems. Appl. Math. Lett. 96, 216–222 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Guan, X., Tang, S.: Solving advection-diffusionequation by proper generalized decomposition with coordinate transformation. J. Sci. Comput. 101(3), 78 (2024)

    MATH  Google Scholar 

  13. Guo, M., Hesthaven, J.S.: Data-driven reduced order modeling for time-dependent problems. Comput. Methods Appl. Mech. Engrg. 345, 75–99 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Iollo, A., Lombardi, D.: Advection modes by optimal mass transfer. Phys. Rev. E 89(2), 022923 (2014)

    MATH  Google Scholar 

  15. Issan, O., Kramer, B.: Predicting solar wind streams from the inner-heliosphere to earth via shifted operator inference. J. Comput. Phys. 473, 111689 (2023)

    MathSciNet  MATH  Google Scholar 

  16. Jin, Y., Hou, L., Zhong, S.: Extended dynamic mode decomposition with invertible dictionary learning. Neural Netw. 173, 106177 (2024)

    MATH  Google Scholar 

  17. Koopman, B.O.: Hamiltonian systems and transformation in hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)

    MATH  Google Scholar 

  18. Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404, 108973 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Li, C.Y., Chen, Z., Zhang, X., Tse, T.K.T., Lin, C.: Koopman analysis by the dynamic mode decomposition in wind engineering. J. Wind. Eng. Ind. Aerod. 232, 105295 (2023)

    MATH  Google Scholar 

  20. Li, Q., Dietrich, F., Bollt, E.M., Kevrekidis, I.G.: Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the koopman operator. Chaos 27, 103111 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Lu, H., Tartakovsky, D.M.: Lagrangian dynamic mode decomposition for construction of reduced-order models of advection-dominated phenomena. J. Comput. Phys. 407, 109229 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Lu, H., Tartakovsky, D.M.: Prediction accuracy of dynamic mode decomposition. SIAM J. Sci. Comput. 42(3), A1639–A1662 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Alireza, M.M., Zahr, M.J.: Model reduction of convection-dominated partial differential equations via optimization-based implicit feature tracking. J. Comput. Phys. 473, 111739 (2023)

    MathSciNet  MATH  Google Scholar 

  24. Matney, A., Perez, R., Song, P., Wang, X.Q., Mignolet, M.P., Spottswood, S.M.: Thermal-structural reduced order models for unsteady/dynamic response of heated structures in large deformations. Appl. Eng. Sci. 12, 100119 (2022)

    Google Scholar 

  25. Maulik, R., Lusch, B., Balaprakash, P.: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. Phys. Fluids 33(3), 037106 (2021)

    MATH  Google Scholar 

  26. Mendible, A., Brunton, S.L., Aravkin, A.Y., Lowrie, W., Kutz, J.N.: Dimensionality reduction and reduced-order modeling for traveling wave physics. Theor. Comput. Fluid Dyn. 34(4), 385–400 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Milano, M., Koumoutsakos, P.: Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182, 1–26 (2002)

    MATH  Google Scholar 

  28. Mojgani, R., Balajewicz: Lagrangian basis method for dimensionality reduction of convection dominated nonlinear flows. arXiv:abs/1701.04343 (2017)

  29. Mojgani, R., Balajewicz, M., Hassanzadeh, P.: Kolmogorov n-width and Lagrangian physics-informed neuralnetworks: a causality-conforming manifold for convection-dominated PDEs. Comput. Methods Appl. Mech. Engrg. 404, 115810 (2023)

    MATH  Google Scholar 

  30. Gugercin, S., Benner, P., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Pinkus, A.: n-Widths in Approximation Theory. Springer, Berlin Heidelberg (1985)

    MATH  Google Scholar 

  32. Qian, L., Feng, X., He, Y.: The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems. Appl. Math. Model. 36, 561–572 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Qian, W., Hesthaven, J.S., Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384, 289–307 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Zhu, S., Li, R., Wu, Q.: Proper orthogonal decomposition with supg-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convectiondiffusion-reaction problems. J. Comput. Phys. 387, 280–302 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Zhu, S., Li, R., Wu, Q.: A numerical b-spline galerkin method with proper generalized decomposition for reduced order modeling of partial differential equations. Commun. Nonlinear Sci. 137, 108057 (2024)

    MathSciNet  MATH  Google Scholar 

  36. Reiss, J., Schulze, P., Sesterhenn, J., Mehrmann, V.: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena. SIAM J. Sci. Comput. 40(3), A1322–A1344 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Schmid, P. J., Sesterhenn, J. L.: Dynamic mode decomposition of numerical and experimental data. Bull. Amer. Phys. Soc., 61st APS meeting. pp. 208 (2008)

  39. Sirovich, L.: Turbulence and the dynamics of coherent structures, i–iii. Q. Appl. Math. 45(3), 561–590 (1987)

    MathSciNet  MATH  Google Scholar 

  40. Solán-Fustero, P., Gracia, J.L., Navas-Montilla, A., García-Navarro, P.: A POD-based ROM strategy for the prediction in time of advection-dominated problems. J. Comput. Phys. 471, 111672 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Sun, T., Yang, D.: The finite difference streamline diffusion methods for sobolev equations with convection-dominated term. Appl. Math. Comput. 125, 325–345 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Tan, J.: An upwind finite volume method for convection-diffusion equations on rectangular mesh. Chaos, Solitons & Fractals 118, 159–165 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Weng, Z., Yang, J.Z., Lu, X.: A stabilized finite element method for the convection dominated diffusion optimal control problem. Appl. Anal. 95(12), 2807–2823 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Whitham, G.B.: Linear and Nonlinear Waves, vol. 42. John Wiley and Sons, New York (2011)

    MATH  Google Scholar 

Download references

Funding

The research is partially supported by the National Natural Science Foundation of China (12371435), Taishan Scholars Program (tsqn202211059), and Shandong Provincial Natural Science Foundation (ZR2023MA043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gao.

Ethics declarations

Conflict of interest

The authors have not disclosed any Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Gao, Z. An Enhanced Reduced-Order Model Based on Dynamic Mode Decomposition for Advection-Dominated Problems. J Sci Comput 102, 84 (2025). https://doi.org/10.1007/s10915-025-02820-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02820-5

Keywords