Skip to main content
Log in

Error Analysis of Finite Element Approximation for Mean Curvature Flows in Axisymmetric Geometry

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We focus on establishing a novel convergence analysis of the numerical approximation methods applied to axisymmetric mean curvature flows (MCFs) with genus-1 surfaces, including both isotropic and anisotropic cases. This advancement builds upon and enhances the findings presented in a previous work in Barrett et al. (IMA J Numer Anal 41:1641–1667, 2021), which exists a strict restriction on the time-space step ratio, i.e. \(\Delta t \lesssim \sqrt{h}\). In this work, we first adopt a novel time-space error splitting technique to remove above restriction under the isotropic case. Furthermore, we discover that this splitting also aids in addressing another unresolved issue present in anisotropic MCFs. Indeed, almost any restrictions on the time and space steps cannot derive the \(L^\infty \)-boundedness of \(D_t\vec {X}_{h, \rho }^m\), which is required for convergence analysis in the anisotropic case. Given that \(\Vert D_t\vec {X}_{h, \rho }^m\Vert _{L^\infty } \lesssim \Delta t^{-1}h^{-1/2}(\Delta t + h) + 1\), we need to ensure that \(h^{-1/2}(1 + \Delta t^{-1}h) \lesssim 1\). This condition is not feasible unless \(h > 1\) is required. Within the scope of this research, we demonstrate that the error analytical technique established for the isotropic case, is also helpful for the anisotropic cases. Finally, we showcase a variety of numerical experiments, including the convergence tests to validate the theoretical analysis, as well as numerical simulations to to further support our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Not applicable.

References

  1. Bai, G., Li, B.: Convergence of a stabilized parametric finite element method of the Barrett–Garcke–Nürnberg type for curve shortening flow. Math. Comput. (2024a)

  2. Bai, G., Li, B.: A new approach to the analysis of parametric finite element approximations to mean curvature flow. Found. Comput. Math. 24, 1673–1737 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Garcke, H., Nürnberg, R., Zhao, Q.: Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations. J. Comput. Phys. 460, 111180 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Jiang, W., Li, Y.: A symmetrized parametric finite element method for anisotropic surface diffusion of closed curves. SIAM J. Numer. Anal. 61, 617–641 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett, J.W., Deckelnick, K., Nürnberg, R.: A finite element error analysis for axisymmetric mean curvature flow. IMA J. Numer. Anal. 41, 1641–1667 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of anisotropic geometric evolution equations in the plane. IMA J. Numer. Anal. 28, 292–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrett, J.W., Garcke, H., Nürnberg, R.: On the parametric finite element approximation of evolving hypersurfaces in \(\mathbb{R} ^3\). J. Comput. Phys. 227, 4281–4307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrett, J.W., Garcke, H., Nürnberg, R.: A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math. 109, 1–44 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barrett, J.W., Garcke, H., Nürnberg, R.: Finite element methods for fourth order axisymmetric geometric evolution equations. J. Comput. Phys. 376, 733–766 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barrett, J.W., Garcke, H., Nürnberg, R.: Variational discretization of axisymmetric curvature flows. Numer. Math. 141, 791–837 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric finite element approximations of curvature driven interface evolutions, Handb. Numer. Anal. (Andrea Bonito and Ricardo H. Nochetto, eds.) 21, 275–423 (2020)

  12. Barrett, J.W., Garcke, H., Nürnberg, R.: Stable approximations for axisymmetric Willmore flow for closed and open surfaces. ESAIM: Math. Mod. Numer. Anal. 55, 833–885 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bernoff, A.J., Bertozzi, A.L., Witelski, T.P.: Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J. Stat. Phys. 93, 725–776 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deckelnick, K., Dziuk, G.: Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math. 72, 197–222 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deckelnick, K., Dziuk, G.: On the approximation of the curve shortening flow, Pitman Research Notes in Mathematics Series, 100–100 (1995b)

  16. Deckelnick, K., Dziuk, G.: Discrete anisotropic curvature flow of graphs. ESAIM: Math. Model. Numer. Anal. 33, 1203–1222 (1999)

  17. Deckelnick, K., Dziuk, G.: A fully discrete numerical scheme for weighted mean curvature flow. Numer. Math. 91, 423–452 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deckelnick, K., Dziuk, G., Elliott, C.M.: Error analysis of a semidiscrete numerical scheme for diffusion in axially symmetric surfaces. SIAM J. Numer. Anal. 41, 2161–2179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deckelnick, K., Nürnberg, R.: A novel finite element approximation of anisotropic curve shortening flow. Interfaces Free Bound. 25, 671–708 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  21. Deckelnick, K., Nürnberg, R.: A novel finite element approximation of anisotropic curve shortening flow. Interfaces Free Bound. 25, 671–708 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. DeTurck, D.M.: Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 18, 157–162 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dziuk, G.: Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci. 4, 589–606 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dziuk, G., Deckelnick, K.: Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs. Interfaces Free Bound. 2, 341–359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hamilton, R.: The formations of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1993)

    Article  MATH  Google Scholar 

  27. Kovács, B., Li, B., Lubich, C.: A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. Numer. Math. 143, 797–853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, B.: Convergence of Dziuk’s linearly implicit parametric finite element method for curve shortening flow. SIAM J. Numer. Anal. 58, 2315–2333 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed fem for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, M., Zhao, Q.: Parametric finite element approximations for anisotropic surface diffusion with axisymmetric geometry. J. Comput. Phys. 497, 112632 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  31. Elliott, C.M., Fritz, H.: On approximations of the curve shortening flow and of the mean curvature flow based on the Deturck trick. IMA J. Numer. Anal. 37, 543–603 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Soner, H.M., Souganidis, P.E.: Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Commun. Partial Differ. Equ. 18, 859–894 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, Q.: A sharp-interface model and its numerical approximation for solid-state dewetting with axisymmetric geometry. J. Comput. Appl. Math. 361, 144–156 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, Q., Jiang, W., Bao, W.: An energy-stable parametric finite element method for simulating solid-state dewetting. IMA J. Numer. Anal. 41, 2026–2055 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (No. 11801527) and China Postdoctoral Science Foundation (No. 2023T160589).

Author information

Authors and Affiliations

Authors

Contributions

Meng Li contributed to the study conception and design, Material preparation, data collection and analysis of this work. The author read and approved the final manuscript.

Corresponding author

Correspondence to Meng Li.

Ethics declarations

Ethical Approval and Consent to participate

Not applicable.

Consent for Publication

All authors consent for publication.

Human and Animal Ethics

Not applicable.

Competing interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M. Error Analysis of Finite Element Approximation for Mean Curvature Flows in Axisymmetric Geometry. J Sci Comput 102, 88 (2025). https://doi.org/10.1007/s10915-025-02821-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02821-4

Keywords