Avoid common mistakes on your manuscript.
Correction to: Journal of Scientific Computing (2025) 102:32 https://doi.org/10.1007/s10915-024-02756-2
In this article, Equations (1.1), (2.1), (2.2), (2.3), (2.6), (2.13), (3.1), (3.2), (3.7) and few in line equations were processed incorrectly.
It should have been appeared as given below.
-
1.
Equation (1.1)
Incorrect Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \begin{bmatrix} {[}c] h\\ hu \end{bmatrix} +\frac{\partial }{\partial x} \begin{bmatrix} {[}c] hu\\ hu^2+\frac{1}{2}gh^2 \end{bmatrix} = \begin{bmatrix} {[}c] 0\\ -ghb_x \end{bmatrix}, \end{aligned}$$Corrected Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \begin{bmatrix} h\\ hu \end{bmatrix} +\frac{\partial }{\partial x} \begin{bmatrix} hu\\ hu^2+\frac{1}{2} gh^2 \end{bmatrix} = \begin{bmatrix} 0\\ -ghb_x \end{bmatrix}. \end{aligned}$$ -
2.
Equation (2.1)
Incorrect Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \underbrace{\begin{bmatrix} {[}c] H\\ hu \end{bmatrix}}_{{\textbf{U}}} +\frac{\partial }{\partial x} \underbrace{\begin{bmatrix} {[}c] hu\\ \frac{(hu)^2}{ H-b}+\frac{1}{2}gH^2-gHb \end{bmatrix}}_{\mathcal {F}({\textbf{U}})} = \underbrace{\begin{bmatrix} {[}c] 0\\ -gHb_x \end{bmatrix}}_{\mathcal {S}(H, b_{x})}. \end{aligned}$$Corrected Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \underbrace{\begin{bmatrix} H\\ hu \end{bmatrix}}_{\textbf{U}} +\frac{\partial }{\partial x} \underbrace{\begin{bmatrix} hu\\ \frac{(hu)^2}{ H-b}+\frac{1}{2} gH^2-gHb \end{bmatrix}}_{\mathcal {F}(\textbf{U})} = \underbrace{\begin{bmatrix} 0\\ -gHb_x \end{bmatrix}}_{\mathcal {S}(H, b_{x})}. \end{aligned}$$ -
3.
Equation (2.2)
Incorrect Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \underbrace{\begin{bmatrix}{[}c] H\\ hu \end{bmatrix}}_{{\textbf{U}}} +\frac{\partial }{\partial x} \underbrace{\begin{bmatrix}{[}c] hu\\ \frac{(hu)^2}{ H-b}+g({\overline{H}}-H)b+\frac{1}{2}gH^2 \end{bmatrix}}_{{\textbf{F}}({\textbf{U}})} = \underbrace{\begin{bmatrix}{[}c] 0\\ g({\overline{H}}-H)b_x \end{bmatrix}}_{{\textbf{S}}(H, b_{x})}, \end{aligned}$$Corrected Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \underbrace{\begin{bmatrix} H\\ hu \end{bmatrix}}_{\textbf{U}} +\frac{\partial }{\partial x} \underbrace{\begin{bmatrix} hu\\ \frac{(hu)^2}{ H-b}+g(\overline{H}-H)b+\frac{1}{2} gH^2 \end{bmatrix}}_{\textbf{F}(\textbf{U})} = \underbrace{\begin{bmatrix} 0\\ g(\overline{H}-H)b_x \end{bmatrix}}_{\textbf{S}(H, b_{x})}. \end{aligned}$$ -
4.
Equation (2.3)
Incorrect Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \begin{bmatrix}{[}c] H\\ hu \end{bmatrix} +\frac{\partial }{\partial x} \begin{bmatrix}{[}c] hu\\ \mathcal {M}(u) \end{bmatrix} = \begin{bmatrix}{[}c] 0\\ g({\overline{H}}-H)b_x \end{bmatrix}. \end{aligned}$$Corrected Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \begin{bmatrix} H\\ hu \end{bmatrix} +\frac{\partial }{\partial x} \begin{bmatrix} hu\\ \mathcal {M}(u) \end{bmatrix} = \begin{bmatrix} 0\\ g(\overline{H}-H)b_x \end{bmatrix}. \end{aligned}$$ -
5.
Equation (2.6)
Incorrect Equation:
$$\begin{aligned} {\hat{{\textbf{F}}}}_{i+\frac{1}{2}} = \frac{1}{2}\left( \begin{bmatrix}{[}c] (hu)^-_{i+\frac{1}{2}} \\ \mathcal {M}(u)^-_{i+\frac{1}{2}} \end{bmatrix} +\begin{bmatrix}{[}c] (hu)^+_{i+\frac{1}{2}} \\ \mathcal {M}(u)^+_{i+\frac{1}{2}} \end{bmatrix}\right) -\frac{\alpha }{2}\left( \begin{bmatrix}{[}c] h^+_{i+\frac{1}{2}} \\ (hu)^+_{i+\frac{1}{2}} \end{bmatrix} -\begin{bmatrix}{[}c] h^-_{i+\frac{1}{2}} \\ (hu)^-_{i+\frac{1}{2}} \end{bmatrix}\right) , \end{aligned}$$Corrected Equation:
$$\begin{aligned} \hat{\textbf{F}}_{i+\frac{1}{2}} = \frac{1}{2}\left( \begin{bmatrix} (hu)^-_{i+\frac{1}{2}} \\ \mathcal {M}(u)^-_{i+\frac{1}{2}} \end{bmatrix} +\begin{bmatrix} (hu)^+_{i+\frac{1}{2}} \\ \mathcal {M}(u)^+_{i+\frac{1}{2}} \end{bmatrix}\right) -\frac{\alpha }{2}\left( \begin{bmatrix} h^+_{i+\frac{1}{2}} \\ (hu)^+_{i+\frac{1}{2}} \end{bmatrix} -\begin{bmatrix} h^-_{i+\frac{1}{2}} \\ (hu)^-_{i+\frac{1}{2}} \end{bmatrix}\right) . \end{aligned}$$ -
6.
The equation in the sentence starts with “To compute the source term......” should have been corrected as given below
“ \(\hat{\textbf{F}}_{i+\frac{1}{2}}-\hat{\textbf{F}}_{i-\frac{1}{2}}\)” \(\Rightarrow \) “\(\hat{ \textbf{F}}^{*}_{i+\frac{1}{2}}-\hat{\textbf{F}}^{*}_{i-\frac{1}{2}}\)”.
-
7.
In Proposition 2.1, the in line equation should be corrected
Incorrect equation:
$$\int _{I_i}{\textbf{S}}(H,b_x)dx = \begin{bmatrix}{[}c] 0 \\ \int _{I_i}g({\overline{H}}-H)b_x dx \end{bmatrix} =\begin{bmatrix}{[}c] 0 \\ 0 \end{bmatrix}.$$Corrected Equation:
$$\int _{I_i}\textbf{S}(H,b_x)dx = \begin{bmatrix} 0 \\ \int _{I_i}g(\overline{H}-H)b_x dx \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$ -
8.
Equation (2.13)
Incorrect Equation:
$$\begin{aligned}&\overline{h}_{i}^{n+1}=\overline{h}_{i}^{n}-\lambda \left( \hat{\textbf{F}}^{*,H}_{i+\frac{1}{2}} -\hat{\textbf{F}}^{*,\,h}_{i-\frac{1}{2}}\right) . \end{aligned}$$Corrected Equation:
$$\begin{aligned}&\overline{h}_{i}^{n+1}=\overline{h}_{i}^{n}-\lambda \left( \hat{\textbf{F}}^{*,H}_{i+\frac{1}{2}} -\hat{\textbf{F}}^{*,H}_{i-\frac{1}{2}}\right) . \end{aligned}$$.
-
9.
Equation (3.1)
Incorrect Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \begin{bmatrix} h\\ hu\\ hv\\ \end{bmatrix} +\frac{\partial }{\partial x} \begin{bmatrix}{[}c] h u\\ h u^{2}+\frac{1}{2} g h^{2}\\ h u v\\ \end{bmatrix} + \frac{\partial }{\partial y} \begin{bmatrix}{[}c] h v\\ h u v \\ h v^{2}+\frac{1}{2} g h^{2}\\ \end{bmatrix} = \begin{bmatrix}{[}c] 0\\ -g h b_{x}\\ -g h b_{y}\\ \end{bmatrix}. \end{aligned}$$Corrected Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \begin{bmatrix} h\\ hu\\ hv\\ \end{bmatrix} +\frac{\partial }{\partial x} \begin{bmatrix} h u\\ h u^{2}+\frac{1}{2} g h^{2}\\ h u v\\ \end{bmatrix} + \frac{\partial }{\partial y} \begin{bmatrix} h v\\ h u v \\ h v^{2}+\frac{1}{2} g h^{2}\\ \end{bmatrix} = \begin{bmatrix} 0\\ -g h b_{x}\\ -g h b_{y}\\ \end{bmatrix}. \end{aligned}$$ -
10.
Equation (3.2)
Incorrect Equation:
$$\begin{aligned}&\frac{\partial }{\partial t} \underbrace{\begin{bmatrix}{[}c] H\\ hu\\ hv \end{bmatrix}}_{{\textbf{U}}} +\frac{\partial }{\partial x} \underbrace{\begin{bmatrix}{[}c] hu\\ \mathcal {M}(u)\\ \frac{(h u)(h v)}{H-b} \end{bmatrix}}_{{\textbf{F}}({\textbf{U}})} +\frac{\partial }{\partial y} \underbrace{\begin{bmatrix}{[}c] hv\\ \frac{(h u)(h v)}{H-b}\\ \mathcal {M}(v) \end{bmatrix}}_{{\textbf{G}}({\textbf{U}})}= \underbrace{\begin{bmatrix}{[}c] 0 \\ S_1(H, b_x)\\ S_2(H, b_y) \end{bmatrix}}_{{\textbf{S}}(H, b)}, \end{aligned}$$Corrected Equation:
$$\begin{aligned} \frac{\partial }{\partial t} \underbrace{\begin{bmatrix} H\\ hu\\ hv \end{bmatrix}}_{\textbf{U}} +\frac{\partial }{\partial x} \underbrace{\begin{bmatrix} hu\\ \mathcal {M}(u)\\ \frac{(h u)(h v)}{H-b} \end{bmatrix}}_{\textbf{F}(\textbf{U})} +\frac{\partial }{\partial y} \underbrace{\begin{bmatrix} hv\\ \frac{(h u)(h v)}{H-b}\\ \mathcal {M}(v) \end{bmatrix}}_{\textbf{G}(\textbf{U})}= \underbrace{\begin{bmatrix} 0 \\ S_1(H, b_x)\\ S_2(H, b_y) \end{bmatrix}}_{\textbf{S}(H, b)}. \end{aligned}$$ -
11.
Equation (3.7) should be corrected as given below:
“ \(\mathcal {L}(\overline{\textbf{U}}_{i,j})\)” \(\Rightarrow \) “\(\mathcal {L}_{i,j}(\overline{\textbf{U}})\)”.
-
12.
In Proposition 3.1, the in line equation should be corrected as given below
Incorrect equation:
$$\int _{I_{ij}}{\textbf{S}}(H,b)dxdy = \begin{bmatrix}{[}c] 0 \\ \int _{I_{ij}}g({\overline{H}}-H)b_x dxdy\\ \int _{I_{ij}}g({\overline{H}}-H)b_y dxdy \end{bmatrix} =\begin{bmatrix}{[}c] 0 \\ 0 \\ 0 \end{bmatrix}.$$Corrected Equation:
$$\int _{I_{i,j}}\textbf{S}(H,b)dxdy = \begin{bmatrix} 0 \\ \int _{I_{i,j}}g(\overline{H}-H)b_x dxdy\\ \int _{I_{i,j}}g(\overline{H}-H)b_y dxdy \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$ -
13.
In Appendix B, Lemma 5.1, the in line equation should be corrected as given below
“ \(\hat{\textbf{F}}^{h}\)” \(\Rightarrow \) “\(\hat{\textbf{F}}^{H}\)”.
The original article has been corrected.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, L., Tao, Z. & Zhang, M. Correction to: Well-Balanced Fifth-Order Finite Volume WENO Schemes with Constant Subtraction Technique for Shallow Water Equations. J Sci Comput 103, 17 (2025). https://doi.org/10.1007/s10915-025-02831-2
Published:
DOI: https://doi.org/10.1007/s10915-025-02831-2