Skip to main content
Log in

Simultaneous Determination of the Order and a Coefficient in a Fractional Diffusion-Wave Equation

  • Review
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper recovers the order of fractional derivative and a time-dependent potential coefficient in a time-fractional diffusion wave equation by an integral condition or one single point measurement on the boundary. The Lipschitz continuity of the forward operators from the unknown order and coefficient to the given data are achieved in terms of the integral equation held by the solution of the direct problem. We also obtain the uniqueness for the considered inverse problems in terms of somewhat general conditions to the given functions. Moreover, we propose a Tikhonov-type regularization method and prove the existence of the regularized solution and its convergence to the exact solution under a suitable regularization parameter choice. Then we use a linearized iteration algorithm to recover numerically the order and time-dependent potential coefficient simultaneously. Three numerical examples for one- and two-dimensional cases are provided to display the efficient of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adams, R.A.: Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London. Pure and Applied Mathematics, vol. 65, (1975)

  2. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Chen, A., Li, C.P.: Numerical solution of fractional diffusion-wave equation. Numer. Funct. Anal. Optim. 37, 19–39 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Floridia, G., Yamamoto, M.: Backward problems in time for fractional diffusion-wave equation. Inverse Problems, vol. 36(12), (2020)

  6. Huang, J.F., Tang, Y.F., Vázquez, L., Yang, J.Y.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Janno, J., Kinash, N.: Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inverse Probl. 34(2), 025007 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Jin, B.T., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with non smooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    MATH  Google Scholar 

  9. Jin, Q.N.: On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems. Numer. Math. 115(2), 229–259 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Kian, Y., Li, Z.Y., Liu, Y.K., Yamamoto, M.: The uniqueness of inverse problems for a fractional equation with a single measurement. Math. Ann. 380(3–4), 1465–1495 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Kian, Y., Yamamoto, M.: On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam (2006)

  13. Liao, K.F., Li, Y.S., Wei, T.: The identification of the time-dependent source term in time-fractional diffusion-wave equations. East Asian. J. Appl. Math. 9(2), 330–354 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Liao, K.F., Zhang, L., Wei, T.: Identifying a fractional order and a time-dependent coefficient in a time-fractional diffusion wave equation. J. Inverse Ill-Posed Probl. 31(5), 631–652 (2023)

    MathSciNet  MATH  Google Scholar 

  15. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solit. Fractals 7(9), 1461–1477 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  17. Morozov, V.A., Nashed, Z., Aries, A.B.: Methods for Solving Incorrectly Posed Problems. Springer-Verlag, New York (1984)

    MATH  Google Scholar 

  18. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Siskova, K., Slodicka, M.: Recognition of a time-dependent source in a time-fractional wave equation. Appl. Numer. Math. 121, 1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Thome, Vidar: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  22. Wei, T., Liao, K.F.: Identifying a time-dependent zeroth-order coefficient in a time-fractional diffusion-wave equation by using the measured data at a boundary point. Appl. Anal. 101(18), 6522–6547 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Wei, T., Xian, J.: Determining a time-dependent coefficient in a time-fractional diffusion-wave equation with the Caputo derivative by an additional integral condition. J. Comput. Appl. Math. 404, 113910 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Wei, T., Zhang, Y.: The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput. Math. Appl. 75(10), 3632–3648 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Wei, T., Zhang, Y., Gao, D.Q.: Identification of the zeroth-order coefficient and fractional order in a time-fractional reaction-diffusion-wave equation. Math. Methods Appl. Sci. 46(1), 142–166 (2023)

    MathSciNet  MATH  Google Scholar 

  26. Yamamoto, M.: Uniqueness for inverse source problems for fractional diffusion-wave equations by data during not acting time. Inverse Probl. 39, 024004 (2023)

    MathSciNet  MATH  Google Scholar 

  27. Yan, X.B., Wei, T.: Identifying a fractional order and a time-dependent coefficient in a time-fractional diffusion wave equation. J. Comput. Appl. Math. 424, 114995 (2023)

    MathSciNet  MATH  Google Scholar 

  28. Yan, X.B., Zhang, Y.X., Wei, T.: Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation. J. Comput. Appl. Math. 393, 113497 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, Y., Wei, T., Yan, X.B.: Recovery of advection coefficient and fractional order in a time-fractional reaction-advection-diffusion-wave equation. J. Comput. Appl. Math. 411, 114254 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, Z.Q., Zhou, Z.: Backward diffusion-wave problem: stability, regularization, and approximation. SIAM J. Sci. Comput. 44(5), A3183–A3216 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (No. 12171215), the Natural Science Foundation of Gansu Province (No. 22JR5RA391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Wei.

Ethics declarations

Conflict of interest

This work does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSF of China (12171215) and NSF of Gansu (22JR5RA391).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Deng, R. Simultaneous Determination of the Order and a Coefficient in a Fractional Diffusion-Wave Equation. J Sci Comput 103, 31 (2025). https://doi.org/10.1007/s10915-025-02836-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02836-x

Keywords