Skip to main content
Log in

Energy Stability of Adaptive Exponential Time Difference Runge-Kutta Method (ETDRK32)

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Exponential Time Difference Runge–Kutta method (ETDRK) is an important approach for simulating gradient flow models, and whether it can maintain energy stability is an important research topic. New adaptive ETDRK method (ETDRK32) has been designed in [4] and proven to possess the property of long time unconditional energy stability for one specific parameter \(\alpha =\frac{2}{3}\). In this paper, we adopt a new method of semi-positive definite matrix decomposition to prove the long-term energy stability of the schemes when the parameter \(\alpha \) is within a certain range. Furthermore, we provide numerical simulations to verify the theoretical analysis and demonstrate the convergence and energy stability of the new schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    MATH  Google Scholar 

  2. Brune, H.: Epitaxial growth of thin films. Surf. Interface Sci. 4, 421–477 (2014)

    MATH  Google Scholar 

  3. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    MATH  Google Scholar 

  4. Cao, W., Yang, H., Chen, W.: An exponential time differencing Runge-Kutta method ETDRK32 for phase field models. J. Sci. Comput. 99, 6 (2024)

    MathSciNet  MATH  Google Scholar 

  5. Chen, L.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    MATH  Google Scholar 

  6. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Math. Model. Numer. Anal. 54(3), 727–750 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. 7(3), 1–27 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Chen, W., Wang, S., Wang, X.: Energy stable arbitrary order ETD-MS method for gradient flows with Lipschitz nonlinearity. CSIAM Trans. Appl. Math. 2(3), 460–483 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Chen, W., Zhang, Y., Li, W., Wang, Y., Yan, Y.: Optimal convergence analysis of a second order scheme for a thin film model without slope selection. J. Sci. Comput. 80(3), 1716–1730 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81(1), 154–185 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase field vesicle membrane model. SIAM J. Sci. Comput. 40(6), A3982–A4006 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Choi, J.W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allen-Cahn equation. Phys. A Stat. Mech. Appl. 388(9), 1791–1803 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Ehrlich, G., Hudda, F.G.: Atomic view of surface self-diffusion: tungsten on tungsten. J. Chem. Phys. 44(3), 1039–1049 (1966)

    Google Scholar 

  17. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Eyre, D.J. (1998): Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS Online Proceedings Library (OPL) 529, 39–46

  19. Fu, Z., Yang, J.: Energy-decreasing exponential time differencing Runge-Kutta methods for phase-field models. J. Comput. Phys. 454, 110943 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Fu, Z., Shen, J., Yang, J.: Higher-order energy-decreasing exponential time differencing Runge-Kutta methods for gradient flows. arXiv:2402.15142(2024)

  21. Golubović, L.: Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 78(1), 90–93 (1997)

    MATH  Google Scholar 

  22. Hao, Y., Huang, Q., Wang, C.: A third order BDF energy stable linear scheme for the no-slope-selection thin film model. Commun. Comput. Phys. 29(3), 905–929 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semi-linear parabolic problems. SIAM J. Numer. Anal. 43(5), 1069–1090 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica. 19, 209–286 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87(312), 1859–1885 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Kassam, A.K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Lebedev, V., Sysoeva, A., Galenko, P.: Unconditionally gradient-stable computational schemes in problems of fast phase transitions. Phys. Rev. E 83(2), 026705 (2011)

    MATH  Google Scholar 

  28. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Li, Y., Lee, H.G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math. Appl. 60(6), 1591–1606 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Liao, H.L., Song, X., Tang, T., Zhou, T.: Analysis of the second-order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci. China Math. 64(5), 887–902 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Shen, J., Jie, X., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Tourret, Damien, Liu, Hong, Lorca, Javier: Phase-field modeling of microstructure evolution: recent applications, perspectives and challenges. Prog. Mater. Sci. 123, 100810 (2002)

    MATH  Google Scholar 

  34. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28(1), 405–423 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math. Mod. Methods Appl. Sci. 27(11), 1993–2030 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn-Hilliard equation. Commun. Comput. Phys. 11(4), 1261–1278 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Chen is supported by the National Natural Science Foundation of China (NSFC 12471369 and NSFC 12071090), he also thanks the Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, for the support. Finally, we are greatly indebted to the referees for their constructive comments and suggestions which led to an improved presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no Conflicts of interest.

Code availability

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Cao, W. & Chen, W. Energy Stability of Adaptive Exponential Time Difference Runge-Kutta Method (ETDRK32). J Sci Comput 103, 28 (2025). https://doi.org/10.1007/s10915-025-02840-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02840-1

Keywords

Mathematics Subject Classification