Skip to main content
Log in

Discontinuous Galerkin Method for Dirichlet Boundary Control Problem Governed by Biharmonic Operator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze the symmetric interior penalty Galerkin (SIPG) finite element method for studying Dirichlet boundary optimal control problem governed by the biharmonic operator. The symmetric property of the mesh dependent bilinear form is a crucial ingredient to derive the discrete optimality system. We perform a priori as well as a posteriori error analysis of the underlying finite element method on any general convex polygonal domain. Under appropriate regularity assumptions, optimal order error bounds are achieved in the energy norm for the control, state and adjoint state. We also derive the error estimate for the control in \(L_2\) norm. Moreover, we have derived residual based reliable and efficient a posteriori error estimator for the development of an efficient adaptive algorithm. When the first penalty parameter tends to infinity, the complete fourth order SIPG finite element method reduces to the classic \(C^0\)-interior penalty method. The corresponding error estimates (both a priori and a posteriori) are obtained for \(C^0\)-interior penalty method. Numerical results demonstrate the execution of the method and compliments the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility

There is no associated data with this manuscript.

References

  1. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Springer Series in Computational Mathematics (Berlin). Springer, New York (1991)

    MATH  Google Scholar 

  3. Brenner, S.C., Wang, K., Zhao, J.: Poincaré-Friedrichs inequalities for piecewise \(H^2\) functions. Numer. Funct. Anal. Optim. 25, 463–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Sung, L.Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22, 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods \((\)Third Edition\()\). Springer, New York (2008)

    Book  MATH  Google Scholar 

  6. Brenner, S.C., Gudi, T., Sung, L.Y.: An a posteriori error estimator for a quadratic \(C^0\) interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30, 777–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C.: \(C^0\) interior penalty methods. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Frontiers in Numerical Analysis-Durham, vol. 2011, pp. 79–147. Springer, Berlin (2010)

    MATH  Google Scholar 

  8. Brenner, S.C., Gu, S., Gudi, T., Sung, L.Y.: A quadratic \(C^0\) interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type. SIAM J. Numer. Anal. 50, 2088–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carstensen, C., Mallik, G., Nataraj, N.: A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Karmán equations. IMA J. Numer. Anal. 39, 167–200 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Casas, E., Dhamo, V.: Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations. Comput. Optim. Appl. 52, 719–756 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casas, E., Mateos, M.: Error estimates for the numerical approximation of Neumann control problems. Comput. Optim. Appl. 39, 265–295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casas, E., Raymond, J.P.: Error estimates for the numerical approximation of Dirichlet boundary control for semi linear elliptic equations. SIAM J. Control. Optim. 45, 1586–1611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chowdhury, S., Gudi, T., Nandakumaran, A.K.: A frame work for the error analysis of discontinuous finite element methods for elliptic optimal control problems and applications to C0IP methods. Numer. Funct. Anal. Optim. 36, 1388–1419 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chowdhury, S., Gudi, T., Nandakumaran, A.K.: Error bounds for a Dirichlet boundary control problem based on energy spaces. Math. Comp. 86, 1103–1126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chowdhury, S., Gudi, T.: A \(C^0\) interior penalty method for the Dirichlet control problem governed by biharmonic operator. J. Comput. Appl. Math. 317, 290–306 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chowdhury, S., Garg, D., Shokeen, R.: Modified \(C^0\) interior penalty analysis for fourth order Dirichlet boundary control problem and a posteriori error estimate. Math. Comput. Simul. 219, 185–211 (2024)

    Article  MATH  Google Scholar 

  17. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  18. Cui, J., Zhang, Y.: A new analysis of discontinuous Galerkin methods for a fourth order variational inequality. Comput. Methods Appl. Mech. Engrg. 351, 531–547 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin, Heidelberg (1988)

    Book  MATH  Google Scholar 

  20. Dond, A.K., Gudi, T., Sau, R.C.: An error analysis of discontinuous finite element methods for the optimal control problems governed by stokes equation. Numer. Func. Anal. Optim. 40, 421–460 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dörlfer, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Du, S., He, X.: Finite element approximation to optimal Dirichlet boundary control problem: A priori and a posteriori error estimates. Comput. Math. Appl. 131, 14–25 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  23. Falk, R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, X., Karakashian, O.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comp. 76, 1093–1117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Frei, S., Rannacher, R., Wollner, W.: A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator. Calcolo 50, 165–193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Garg, D., Porwal, K.: Adaptive finite element methods for a fourth order obstacle problem and a state constrained optimal control problem. Math. Comput. Simul. 207, 1–23 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  27. Garg, D., Porwal, K.: Unified discontinuous Galerkin finite element methods for second order Dirichlet boundary control problem. Appl. Numer. Math. 185, 336–364 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  28. Garg, D., Porwal, K.: Mixed finite element method for the second order Dirichlet boundary control problem. Comput. Math. Appl. 135, 31–59 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  29. Georgoulis, E.H., Houston, P.: Discontinuous Galerkin methods for biharmonic problems. IMA J. Numer. Anal. 29, 573–594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Georgoulis, E.H., Houston, P., Virtanen, J.: An a posteriori error indicator for discontinuous Galerkin approximations of fourth order elliptic problems. IMA J. Numer. Anal. 31, 281–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation (English, with French summary). RAIRO Anal. Numer. 13, 313–328 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  33. Gudi, T., Nataraj, N., Porwal, K.: An interior penalty method for distributed optimal control problems governed by the biharmonic operator. Comput. Math. Appl. 68, 2205–2221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gudi, T., Sau, R.C.: Finite element analysis of a constrained Dirichlet boundary control problem governed by the diffusion problem. ESIAM Conrol. Optim. Calc. Var. 26, 78 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gudi, T., Mallik, G., Sau, R.C.: Finite element analysis of a constrained Dirichlet boundary control problem governed by a linear parabolic equation. SIAM J. Control. Optim. 60, 3262–3288 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gudi, T., Sau, R.C.: A two level finite element method for Stokes constrained Dirichlet boundary control problem. Comput. Math. Appl. 129, 126–135 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  37. Günther, A., Hinze, M.: Elliptic control problems with gradient contraints, variational discrete versus piecewise constant controls. Comput. Optim. Appl. 49, 549–566 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kanshat, G., Sharma, N.: Divergence-conforming Galerkin methods and \(C^0\) interior penalty method. SIAM J. Numer. Anal. 52, 1822–1842 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kozlov, V.A., Mazya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. AMS, Providence, Renton (1997)

    MATH  Google Scholar 

  40. May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control. Optim. 51, 2585–2611 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mozoevski, I., Süli, E.: hp version interior penalty DGFEMs for the biharmonic Equation. Technical Report 04/05. Oxford University Computing Laboratory, Oxford (2004)

    MATH  Google Scholar 

  42. Mozoevski, I., Süli, E.: A priori error analysis for the \(hp\)-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3, 596–607 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mozoevski, I., Süli, E., Bösing, P.: \(hp\)-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, 465–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control. Optim. 48, 970–985 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. de Gruyter, Berlin, New York (1994)

    Book  MATH  Google Scholar 

  46. Of, G., Phan, T.X., Steinbach, O.: An energy space finite element approach for elliptic Dirichlet boundary control problems. Numer. Math. 129, 723–748 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Süli, E., Mozolevski, I.: \(hp\)-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196, 1851–1863 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Troltzsch, F.: Optimale steuerung partieller differentialgleichungen. Vieweg, Cambridge University Press (2005)

    Book  MATH  Google Scholar 

Download references

Funding

Divay Garg’s work is supported by CSIR Research Fellowship. Kamana Porwal’s work is supported by DST Inspire Faculty Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamana Porwal.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Divay Garg’s work is supported by CSIR Research Fellowship.

Kamana Porwal’s work is supported by DST Inspire Faculty Research Grant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, D., Porwal, K. Discontinuous Galerkin Method for Dirichlet Boundary Control Problem Governed by Biharmonic Operator. J Sci Comput 103, 23 (2025). https://doi.org/10.1007/s10915-025-02841-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02841-0

Keywords

Mathematics Subject Classification