Skip to main content
Log in

A Mixed Finite Element Approach for A Variational-Hemivariational Inequality of Incompressible Bingham Fluids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider an incompressible Bingham fluid with a nonsmooth and nonconvex slip boundary condition and establish its variational formulation, i.e., the Bingham type variational-hemivariational inequality. The existence and uniqueness of solutions are investigated based on the minimization argument. To solve this problem, we construct an equivalent mixed hemivariational inequality based on the minimax principles and employ an Uzawa type iteration algorithm to approximate it. Then we give a convergence analysis for such an algorithm. Further, we adopt a P2–P1 finite element to discretize the mixed hemivariational inequality and obtain the error estimates. Finally, the numerical test results are presented, which are in accordance with the previous error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No data.

References

  1. Allendes, A., Barrenechea, G.R., Novo, J.: A divergence-free stabilized finite element method for the evolutionary Navier–Stokes equations. SIAM J. Sci. Comput. 43, A3809–A3836 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Rejaiba, A.: Lp-theory for Stokes and Navier–Stokes equations with Navier boundary condition. J. Differ. Equ. 256, 1515–1547 (2014)

    MATH  Google Scholar 

  3. Aposporidis, A., Haber, E., Olshanskii, M.A., Veneziani, A.: A mixed formulation of the Bingham fluid flow problem: analysis and numerical solution. Comput. Methods Appl. Mech. Eng. 200, 2434–2446 (2011)

    MathSciNet  MATH  Google Scholar 

  4. An, R., Li, Y., Li, K.: Solvability of Navier–Stokes equations with leak boundary conditions. Acta Math. Appl. Sin. Engl. Ser. 25, 225–234 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Baranovskii, E.S.: On flows of Bingham-type fluids with threshold slippage. Adv. Math. Phys. 2017, 7548328 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bacuta, C.: A unified approach for Uzawa algorithms. SIAM J. Numer. Anal. 44, 2633–2649 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Banz, L., Hernández, O., Stephan, E.P.: A priori and a posteriori error estimates for hp-fem for a Bingham type variational inequality of the second kind. Comput. Math. Appl. 126, 14–30 (2022)

    MathSciNet  MATH  Google Scholar 

  8. Carstensen, C., Reddy, B.D., Schedensack, M.: A natural nonconforming fem for the Bingham flow problem is quasi-optimal. Numer. Math. 133, 37–66 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Cai, D.L., Hu, J.Y., Xiao, Y.B.: A fully-discrete finite element scheme and projection-iteration algorithm for a dynamic contact problem with multi-contact zones and unilateral constraint. J. Sci. Comput. 96, 3 (2023)

    MathSciNet  MATH  Google Scholar 

  10. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration SIAM. J. Sci. Comput. 20, 1964–1977 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Da Veiga, L.B., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56, 1210–1242 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Dudek, S., Migórski, S.: Evolutionary Oseen model for generalized Newtonian fluid with multivalued nonmonotone friction law. J. Math. Fluid Mech. 20, 1317–1333 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Fujita, H.: A coherent analysis of Stokes flows under boundary conditions of friction type. J. Comput. Appl. Math. 149, 57–69 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Fang, C., Czuprynski, K., Han, W., Cheng, X., Dai, X.: Finite element method for a stationary stokes hemivariational inequality with slip boundary condition. IMA J. Numer. Anal. 40, 2696–2716 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Formaggia, L., Moura, A., Nobile, F.: On the stability of the coupling of 3d and 1d fluid-structure interaction models for blood flow simulations. ESAIM Math. Model. Numer. Anal. 41, 743–769 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Gustafsson, T., Ledere, P.L.: Mixed finite elements for Bingham flow in a pipe. Numer. Math. 152, 819–840 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (1986)

    MATH  Google Scholar 

  18. Han, W.: Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics. Math. Mech. Solids 23, 279–293 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Han, W.: A revisit of elliptic variational-hemivariational inequalities. Numer. Funct. Anal. Optim. 42, 371–395 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Han, W., Czuprynski, K., Jing, F.: Mixed finite element method for a hemivariational inequality of stationary Navier–Stokes equations. J. Sci. Comput. 89, 8 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Han, W., Matei, A.: Minimax principles for elliptic mixed hemivariational-variational inequalities. Nonlinear Anal. Real World Appl. 64, 103448 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Han, W., Migorski, S., Sofonea, M.: A class of variational-hemivariational inequalities with applications to frictional contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Han, W., Sofonea, M., Barboteu, M.: Numerical analysis of elliptic hemivariational inequalities. SIAM J. Numer. Anal. 55, 640–663 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Ionescu, I.R., Nguyen, Q.L.: Dynamic contact problems with slip dependent friction in viscoelasticity. Int. J. Appl. Math. Comp. Sci. 12, 71–80 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Ionescu, I.R., Nguyen, Q.L., Wolf, Q.L.: Slip-dependent friction in dynamic elasticity. Nonlinear Anal. 53, 375–390 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Ionescu, I.R., Paumier, J.C.: On the contact problem with slip displacement dependent friction in elastostatics. Int. J. Eng. Sci. 34, 471–491 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Jing, F., Han, W., Yan, W., Wang, F.: Discontinuous Galerkin methods for a stationary Navier–Stokes problem with a nonlinear slip boundary condition of friction type. J. Sci. Comput. 76, 888–912 (2018)

    MathSciNet  MATH  Google Scholar 

  28. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59, 492–544 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Society for Industrial and Applied Mathematics, Philadelphia (1988)

    MATH  Google Scholar 

  30. Kashiwabara, T.: On a finite element approximation of the stokes equations under a slip boundary condition of the friction type. Jpn. J. Ind. Appl. Math. 30, 227–261 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Layton, W., Lee, H.K., Peterson, J.: Numerical solution of the stationary Navier–Stokes equations using a multilevel finite element method. SIAM J. Sci. Comput. 20, 1–12 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Li, Y., An, R.: Two-level iteration penalty methods for the Navier–Stokes equations with friction boundary conditions. Abstract Appl. Anal. 2013, 1–17 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Ling, M., Han, W., Zeng, S.: A pressure projection stabilized mixed finite element method for a Stokes hemivariational inequality. J. Sci. Comput. 92, 13 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Migórski, S., Ochal, A., Mircea, S.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer, New York (2013)

    MATH  Google Scholar 

  35. Migórski, S., Dudek, S.: A class of variational-hemivariational inequalities for Bingham type fluids. Appl. Math. Optim. 85, 16 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Migórski, S., Chao, Y., He, J., Dudek, S.: Analysis of quasi-variational-hemivariational inequalities with applications to Bingham-type fluids. Commun. Nonlinear Sci. Numer. Simul. 133, 107968 (2024)

    MathSciNet  MATH  Google Scholar 

  37. Migórski, S., Dudek, S.: Well-posedness of steady-state Bingham type system by a quasi variational-hemivariational approach. Contemp. Math. 786, 185–213 (2023)

    MathSciNet  MATH  Google Scholar 

  38. Saidi, F.: On the Navier–Stokes equation with slip boundary conditions of friction type. Math. Model. Anal. 12, 389–398 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Zhang, Y.M.: Error estimates for the numerical approximation of time-dependent flow of Bingham fluid in cylindrical pipes by the regularization method. Numer. Math. 96, 153–184 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Zeidler, E.: Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization. Springer, New York (1986)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Sichuan Province (2024NSFSC1392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Chen, T. A Mixed Finite Element Approach for A Variational-Hemivariational Inequality of Incompressible Bingham Fluids. J Sci Comput 103, 36 (2025). https://doi.org/10.1007/s10915-025-02847-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02847-8

Keywords

Mathematics Subject Classification