Abstract
A Voigt regularization is considered for the incompressible MHD equations in Elsässer variables. Then based on the BDF2, we propose and analyze a linearized and unconditionally stable finite element algorithm for this problem, which can be decoupled when the regularization parameters are equal. With the help of the Voigt regularization, the present algorithm removes the restriction involving the kinematic viscosity \(\nu \) and magnetic permeability \(\nu _m\), \(\frac{1}{2}< \nu /\nu _m< 2\), which comes from the BDF2 for the MHD equations in Elsässer variables. Furthermore, the unconditionally stability and convergence of this algorithm for the Voigt regularization of MHD equations in Elsässer variables are proved. Finally, several numerical simulations are provided to confirm the numerical theory, and show that the proposed algorithm outperforms the usual BDF2 for the problem outside the interval.










Similar content being viewed by others
Data Availability
Enquiries about data availability should be directed to the authors.
References
Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)
Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)
Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150(3805), 405–406 (1942)
Smolentsev, S., Moreau, R., Bühler, L., Mistrangelo, C.: MHD thermofluid issues of liquid-metal blankets: phenomena and advances. Fusion Eng. Des. 85(7–9), 1196–1205 (2010)
Goedbloed, J.P., Keppens, R., Poedts, S.: Advanced Magnetohydrodynamics: with Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2010)
Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 56(194), 523–563 (1991)
He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35(2), 767–801 (2015)
Yang, J., Mao, S., He, X., Yang, X., He, Y.: A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Methods Appl. Mech. Eng. 356, 435–464 (2019)
Rong, Y., Hou, Y.: A partitioned second-order method for magnetohydrodynamic flows at small magnetic Reynolds numbers. Numer. Methods Partial Differ. Equ. 33(6), 1966–1986 (2017)
Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28(04), 659–695 (2018)
Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations. Sci. China Math. 59, 1495–1510 (2016)
Liu, S., Huang, P., He, Y.: A second-order scheme based on blended BDF for the incompressible MHD system. Adv. Comput. Math. 49(5), 74 (2023)
Yang, J., Mao, S.: Second order fully decoupled and unconditionally energy-stable finite element algorithm for the incompressible MHD equations. Appl. Math. Lett. 121, 107467 (2021)
Zhang, G.-D., He, X., Yang, X.: A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations. J. Comput. Phys. 448, 110752 (2022)
Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows. Numer. Methods Partial Differ. Equ. 30(4), 1083–1102 (2014)
Han, W.-W., Jiang, Y.-L.: Numerical analysis of an improved projection method for the evolutionary magnetohydrodynamic equations with modular grad-div stabilization. Comput. Math. Appl. 167, 298–314 (2024)
Liu, S., Huang, P.: A sparse grad-div stabilized algorithm for the incompressible magnetohydrodynamics equations. Comput. Math. Appl. 138, 106–119 (2023)
Elsässer, W.M.: The hydromagnetic equations. Phys. Rev. 79, 183–183 (1950)
Dobrowolny, M., Mangeney, A., Veltri, P.: Properties of magnetohydrodynamic turbulence in the solar wind. Astron. Astrophys. 83, 26–32 (1980)
Schmidt, P.G.: On a magnetohydrodynamic problem of Euler type. J. Differ. Equ. 74(2), 318–335 (1988)
Marsch, E., Tu, C.-Y.: Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence. J. Plasma Phys. 41(3), 479–491 (1989)
Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows. Appl. Math. Lett. 27, 97–100 (2014)
Li, Y., Trenchea, C.: Partitioned second order method for magnetohydrodynamics in Elsässer fields. Discr. Continu. Dyn. Syst. B 23(7), 2803–2823 (2018)
Aggul, M., Eroglu, F.G., Kaya, S.: Artificial compression method for MHD system in Elsässer variables. Appl. Numer. Math. 185, 72–87 (2023)
Wilson, N., Labovsky, A., Trenchea, C.: High accuracy method for magnetohydrodynamics system in Elsässer variables. Comput. Methods Appl. Math. 15(1), 97–110 (2015)
Erkmen, D., Kaya, S., Çıbık, A.: A second order decoupled penalty projection method based on deferred correction for MHD in Elsässer variable. J. Comput. Appl. Math. 371, 112694 (2020)
Akbas, M., Kaya, S., Mohebujjaman, M., Rebholz, L.G.: Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in Elsässer variable. Int. J. Numer. Anal. Model. 13(1), 90–113 (2016)
Olson, P.: Experimental dynamos and the dynamics of planetary cores. Annu. Rev. Earth Planet. Sci. 41(1), 153–181 (2013)
Heister, T., Mohebujjaman, M., Rebholz, L.G.: Decoupled, unconditionally stable, higher order discretizations for MHD flow simulation. J. Sci. Comput. 71, 21–43 (2017)
Magyar, N., Van Doorsselaere, T., Goossens, M.: The nature of Elsässer variables in compressible MHD. Astrophys. J. 873(1), 56 (2019)
Bruno, R., Carbone, V.: The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10(1), 2 (2013)
Voigt, W.: Ueber innere Reibung fester Kórper, insbesondere der Metalle. Ann. Phys. 283, 671–693 (1892)
Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)
Larios, A., Pei, Y., Rebholz, L.: Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations. J. Differ. Equ. 266(5), 2435–2465 (2019)
Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete Contin. Dyn. Syst. B 14(2), 603–627 (2010)
Kuberry, P., Larios, A., Rebholz, L.G., Wilson, N.E.: Numerical approximation of the Voigt regularization for incompressible Navier–Stokes and magnetohydrodynamic flows. Comput. Math. Appl. 64(8), 2647–2662 (2012)
Constantin, P., Pasqualotto, F.: Magnetic Relaxation of a Voigt-MHD System. Commun. Math. Phys. 402(2), 1931–1952 (2023)
Takhirov, A.: Voigt regularization for the explicit time stepping of the Hall effect term. Geophys. Astrophys. Fluid Dyn. 110(5), 409–431 (2016)
Yang, X., Huang, P., He, Y.: A Voigt-regularization of the thermally coupled inviscid, resistive magnetohydrodynamic. Int. J. Numer. Anal. Model. 21(4), 476–503 (2024)
Yang, X., Huang, P., He, Y.: A Voigt regularization of the thermally coupled magnetohydrodynamic flow. Z. Angew. Math. Phys. 75(3), 115 (2024)
Layton, W.J., Rebholz, L.G.: On relaxation times in the Navier–Stokes–Voigt model. Int. J. Comput. Fluid Dyn. 27(3), 184–187 (2013)
Rong, Y., Fiordilino, J.A., Shi, F., Cao, Y.: A modular Voigt regularization of the Crank-Nicolson finite element method for the Navier–Stokes equations. J. Sci. Comput. 92(3), 101 (2022)
Bisconti, L.: Remark on a regularity criterion in terms of pressure for the 3D inviscid Boussinesq–Voigt equations. Differ. Equ. Dynam. Syst. 31(4), 895–906 (2023)
Zang, A.: Local well-posedness for boundary layer equations of Euler-Voigt equations in analytic setting. J. Differ. Equ. 307, 1–28 (2022)
Larios, A., Titi, E.S.: Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations. J. Math. Fluid Mech. 16(1), 59–76 (2014)
Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier–Stokes equations. SIAM J. Numer. Anal. 35(5), 2035–2054 (1998)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin Heidelberg (2012)
Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96(4), 771–800 (2004)
Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem: Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)
Li, L., Zheng, W.: A robust solver for the finite element approximation of stationary incompressible MHD equations in 3D. J. Comput. Phys. 351, 254–270 (2017)
Acknowledgements
The authors would like to thank the editor and anonymous reviewers for their valuable comments and suggestions, which have led to a considerable improvement in the current work.
Funding
This work is sponsored by the Natural Science Foundation of China (grant number 12361077), Natural Science Foundation of Xinjiang Uygur Autonomous Region (grant number 2023D14014) and the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region (grant number 2023TSYCCX0103).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, X., Huang, P. & He, Y. A Voigt Regularization for Incompressible MHD Equations in Elsässer Variables. J Sci Comput 103, 21 (2025). https://doi.org/10.1007/s10915-025-02849-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-025-02849-6