Skip to main content
Log in

A Voigt Regularization for Incompressible MHD Equations in Elsässer Variables

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A Voigt regularization is considered for the incompressible MHD equations in Elsässer variables. Then based on the BDF2, we propose and analyze a linearized and unconditionally stable finite element algorithm for this problem, which can be decoupled when the regularization parameters are equal. With the help of the Voigt regularization, the present algorithm removes the restriction involving the kinematic viscosity \(\nu \) and magnetic permeability \(\nu _m\), \(\frac{1}{2}< \nu /\nu _m< 2\), which comes from the BDF2 for the MHD equations in Elsässer variables. Furthermore, the unconditionally stability and convergence of this algorithm for the Voigt regularization of MHD equations in Elsässer variables are proved. Finally, several numerical simulations are provided to confirm the numerical theory, and show that the proposed algorithm outperforms the usual BDF2 for the problem outside the interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  2. Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150(3805), 405–406 (1942)

    Article  MATH  Google Scholar 

  4. Smolentsev, S., Moreau, R., Bühler, L., Mistrangelo, C.: MHD thermofluid issues of liquid-metal blankets: phenomena and advances. Fusion Eng. Des. 85(7–9), 1196–1205 (2010)

    Article  MATH  Google Scholar 

  5. Goedbloed, J.P., Keppens, R., Poedts, S.: Advanced Magnetohydrodynamics: with Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  6. Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 56(194), 523–563 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35(2), 767–801 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, J., Mao, S., He, X., Yang, X., He, Y.: A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Methods Appl. Mech. Eng. 356, 435–464 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rong, Y., Hou, Y.: A partitioned second-order method for magnetohydrodynamic flows at small magnetic Reynolds numbers. Numer. Methods Partial Differ. Equ. 33(6), 1966–1986 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28(04), 659–695 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations. Sci. China Math. 59, 1495–1510 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, S., Huang, P., He, Y.: A second-order scheme based on blended BDF for the incompressible MHD system. Adv. Comput. Math. 49(5), 74 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, J., Mao, S.: Second order fully decoupled and unconditionally energy-stable finite element algorithm for the incompressible MHD equations. Appl. Math. Lett. 121, 107467 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, G.-D., He, X., Yang, X.: A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations. J. Comput. Phys. 448, 110752 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows. Numer. Methods Partial Differ. Equ. 30(4), 1083–1102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, W.-W., Jiang, Y.-L.: Numerical analysis of an improved projection method for the evolutionary magnetohydrodynamic equations with modular grad-div stabilization. Comput. Math. Appl. 167, 298–314 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, S., Huang, P.: A sparse grad-div stabilized algorithm for the incompressible magnetohydrodynamics equations. Comput. Math. Appl. 138, 106–119 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elsässer, W.M.: The hydromagnetic equations. Phys. Rev. 79, 183–183 (1950)

    Article  MATH  Google Scholar 

  19. Dobrowolny, M., Mangeney, A., Veltri, P.: Properties of magnetohydrodynamic turbulence in the solar wind. Astron. Astrophys. 83, 26–32 (1980)

    MATH  Google Scholar 

  20. Schmidt, P.G.: On a magnetohydrodynamic problem of Euler type. J. Differ. Equ. 74(2), 318–335 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marsch, E., Tu, C.-Y.: Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence. J. Plasma Phys. 41(3), 479–491 (1989)

    Article  MATH  Google Scholar 

  22. Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows. Appl. Math. Lett. 27, 97–100 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y., Trenchea, C.: Partitioned second order method for magnetohydrodynamics in Elsässer fields. Discr. Continu. Dyn. Syst. B 23(7), 2803–2823 (2018)

    MATH  Google Scholar 

  24. Aggul, M., Eroglu, F.G., Kaya, S.: Artificial compression method for MHD system in Elsässer variables. Appl. Numer. Math. 185, 72–87 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wilson, N., Labovsky, A., Trenchea, C.: High accuracy method for magnetohydrodynamics system in Elsässer variables. Comput. Methods Appl. Math. 15(1), 97–110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Erkmen, D., Kaya, S., Çıbık, A.: A second order decoupled penalty projection method based on deferred correction for MHD in Elsässer variable. J. Comput. Appl. Math. 371, 112694 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Akbas, M., Kaya, S., Mohebujjaman, M., Rebholz, L.G.: Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in Elsässer variable. Int. J. Numer. Anal. Model. 13(1), 90–113 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Olson, P.: Experimental dynamos and the dynamics of planetary cores. Annu. Rev. Earth Planet. Sci. 41(1), 153–181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heister, T., Mohebujjaman, M., Rebholz, L.G.: Decoupled, unconditionally stable, higher order discretizations for MHD flow simulation. J. Sci. Comput. 71, 21–43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Magyar, N., Van Doorsselaere, T., Goossens, M.: The nature of Elsässer variables in compressible MHD. Astrophys. J. 873(1), 56 (2019)

    Article  Google Scholar 

  31. Bruno, R., Carbone, V.: The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10(1), 2 (2013)

    MATH  Google Scholar 

  32. Voigt, W.: Ueber innere Reibung fester Kórper, insbesondere der Metalle. Ann. Phys. 283, 671–693 (1892)

    Article  MATH  Google Scholar 

  33. Cao, Y., Lunasin, E.M., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Larios, A., Pei, Y., Rebholz, L.: Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations. J. Differ. Equ. 266(5), 2435–2465 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete Contin. Dyn. Syst. B 14(2), 603–627 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Kuberry, P., Larios, A., Rebholz, L.G., Wilson, N.E.: Numerical approximation of the Voigt regularization for incompressible Navier–Stokes and magnetohydrodynamic flows. Comput. Math. Appl. 64(8), 2647–2662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Constantin, P., Pasqualotto, F.: Magnetic Relaxation of a Voigt-MHD System. Commun. Math. Phys. 402(2), 1931–1952 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  38. Takhirov, A.: Voigt regularization for the explicit time stepping of the Hall effect term. Geophys. Astrophys. Fluid Dyn. 110(5), 409–431 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, X., Huang, P., He, Y.: A Voigt-regularization of the thermally coupled inviscid, resistive magnetohydrodynamic. Int. J. Numer. Anal. Model. 21(4), 476–503 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, X., Huang, P., He, Y.: A Voigt regularization of the thermally coupled magnetohydrodynamic flow. Z. Angew. Math. Phys. 75(3), 115 (2024)

    Article  MathSciNet  MATH  Google Scholar 

  41. Layton, W.J., Rebholz, L.G.: On relaxation times in the Navier–Stokes–Voigt model. Int. J. Comput. Fluid Dyn. 27(3), 184–187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rong, Y., Fiordilino, J.A., Shi, F., Cao, Y.: A modular Voigt regularization of the Crank-Nicolson finite element method for the Navier–Stokes equations. J. Sci. Comput. 92(3), 101 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. Bisconti, L.: Remark on a regularity criterion in terms of pressure for the 3D inviscid Boussinesq–Voigt equations. Differ. Equ. Dynam. Syst. 31(4), 895–906 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zang, A.: Local well-posedness for boundary layer equations of Euler-Voigt equations in analytic setting. J. Differ. Equ. 307, 1–28 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  45. Larios, A., Titi, E.S.: Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations. J. Math. Fluid Mech. 16(1), 59–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier–Stokes equations. SIAM J. Numer. Anal. 35(5), 2035–2054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin Heidelberg (2012)

    MATH  Google Scholar 

  48. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96(4), 771–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem: Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. Li, L., Zheng, W.: A robust solver for the finite element approximation of stationary incompressible MHD equations in 3D. J. Comput. Phys. 351, 254–270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewers for their valuable comments and suggestions, which have led to a considerable improvement in the current work.

Funding

This work is sponsored by the Natural Science Foundation of China (grant number 12361077), Natural Science Foundation of Xinjiang Uygur Autonomous Region (grant number 2023D14014) and the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region (grant number 2023TSYCCX0103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Huang, P. & He, Y. A Voigt Regularization for Incompressible MHD Equations in Elsässer Variables. J Sci Comput 103, 21 (2025). https://doi.org/10.1007/s10915-025-02849-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02849-6

Keywords