Skip to main content

Advertisement

Log in

On the Analysis of Semismooth Newton-Type Methods for Composite Optimization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of nonlinear equations derived from first-order type methods for solving composite optimization problems. Traditional approaches to establishing superlinear convergence rates of semismooth Newton-type methods for solving nonlinear equations usually postulate either nonsingularity of the B-Jacobian or smoothness of the equation. We investigate the feasibility of both conditions. For the nonsingularity condition, we present equivalent characterizations in broad generality and illustrate that they are easy-to-check criteria for some examples. For the smoothness condition, we show that it holds locally for a class of residual mappings derived from composite optimization problems. Furthermore, we investigate a relaxed version of the smoothness condition - smoothness restricted to certain active manifolds. We present a conceptual algorithm utilizing such structures and prove that it has a superlinear convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets analyzed during the current study are available in [59].

References

  1. Absil, P.-A., Malick, J.: Projection-like retractions on matrix manifolds. SIAM J. Optim. 22(1), 135–158 (2012)

    MathSciNet  Google Scholar 

  2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    MathSciNet  Google Scholar 

  3. Bareilles, G, Iutzeler, F, Malick, J: Newton acceleration on manifolds identified by proximal gradient methods. Mathematical Programming, pp 1–34, (2022)

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    MathSciNet  Google Scholar 

  5. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

    MathSciNet  Google Scholar 

  6. Zi Xian, C., Defeng, S.: Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming. SIAM J. Optim. 19(1), 370–396 (2008)

    MathSciNet  Google Scholar 

  7. Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and the lower-\(C^2\) property. J. Convex Anal. 2(1–2), 117–144 (1995)

    MathSciNet  Google Scholar 

  8. Clarke, F H.: Nonsmooth analysis and optimization. In Proceedings of the International Congress of Mathematicians, volume 5, pages 847–853. Citeseer, (1983)

  9. Combettes, P L., Pesquet, J-C.: Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212. Springer, (2011)

  10. Daniilidis, A., Hare, W., Malick, J.: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization 55(5–6), 481–503 (2006)

    MathSciNet  Google Scholar 

  11. Davis, D, Drusvyatskiy, D, Shi, Z: Stochastic optimization over proximally smooth sets. arXiv preprint arXiv:2002.06309, (2020)

  12. Davis, D, Yin, W: Convergence rate analysis of several splitting schemes. In Splitting Methods in Communication, Imaging, Science, and Engineering, pages 115–163. Springer, (2016)

  13. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Generic minimizing behavior in semialgebraic optimization. SIAM J. Optim. 26(1), 513–534 (2016)

    MathSciNet  Google Scholar 

  14. Drusvyatskiy, D, Lewis, A S.: Optimality, identifiability, and sensitivity. arXiv preprint arXiv:1207.6628, (2012)

  15. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1), 293–318 (1992)

    MathSciNet  Google Scholar 

  16. Facchinei, F: Finite-dimensional variational inequalities and complementarity problems, (2003)

  17. Facchinei, F., Fischer, A., Herrich, M.: An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions. Math. Program. 146, 1–36 (2014)

    MathSciNet  Google Scholar 

  18. Fan, J., Pan, J.: Inexact Levenberg-Marquardt method for nonlinear equations. Dis. Contin. Dyn. Syst-B 4(4), 1223 (2004)

    MathSciNet  Google Scholar 

  19. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94(1), 91–124 (2002)

    MathSciNet  Google Scholar 

  20. Fischer, A., Herrich, M., Izmailov, A.F., Solodov, M.V.: Convergence conditions for Newton-type methods applied to complementarity systems with nonisolated solutions. Comput. Optim. Appl. 63, 425–459 (2016)

    MathSciNet  Google Scholar 

  21. Fischer, A., Shukla, P., Wang, M.: On the inexactness level of robust Levenberg-Marquardt methods. Optimization 59(2), 273–287 (2010)

    MathSciNet  Google Scholar 

  22. Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimization problems. Int. J. Syst. Sci. 12(8), 989–1000 (1981)

    Google Scholar 

  23. Griesse, R., Lorenz, D.A.: A semismooth Newton method for Tikhonov functionals with sparsity constraints. Inverse Prob. 24(3), 035007 (2008)

    MathSciNet  Google Scholar 

  24. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(\ell _1\)-minimization: Methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)

    MathSciNet  Google Scholar 

  25. Karimi, H, Nutini, J, Schmidt, M: Linear convergence of gradient and proximal-gradient methods under the Polyak-Łojasiewicz condition. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, (2016)

  26. Kummer, B.: Newton’s method for non-differentiable functions. Adv. Math. Optim. 45(1988), 114–125 (1988)

    Google Scholar 

  27. Lewis, A.S.: Active sets, nonsmoothness, and sensitivity. SIAM J. Optim. 13(3), 702–725 (2002)

    MathSciNet  Google Scholar 

  28. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1), 216–234 (2008)

    MathSciNet  Google Scholar 

  29. Li, D.-H., Fukushima, M., Qi, L., Yamashita, N.: Regularized Newton methods for convex minimization problems with singular solutions. Comput. Optim. Appl. 28(2), 131–147 (2004)

    MathSciNet  Google Scholar 

  30. Guoyin Li and Ting Kei Pong: Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Math. Program. 159(1), 371–401 (2016)

    MathSciNet  Google Scholar 

  31. Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM J. Optim. 28(1), 433–458 (2018)

    MathSciNet  Google Scholar 

  32. Li, X., Sun, D., Toh, K.-C.: An asymptotically superlinearly convergent semismooth Newton augmented Lagrangian method for linear programming. SIAM J. Optim. 30(3), 2410–2440 (2020)

    MathSciNet  Google Scholar 

  33. Li, Y., Wen, Z., Yang, C., Yuan, Y.: A semismooth Newton method for semidefinite programs and its applications in electronic structure calculations. SIAM J. Sci. Comput. 40(6), A4131–A4157 (2018)

    MathSciNet  Google Scholar 

  34. Liang, J, Fadili, J, Peyré, G: Local linear convergence of forward–backward under partial smoothness. Advances in Neural Information Processing Systems, 27, (2014)

  35. Liang, J., Fadili, J., Peyré, G.: Activity identification and local linear convergence of forward-backward-type methods. SIAM J. Optim. 27(1), 408–437 (2017)

    MathSciNet  Google Scholar 

  36. Lin, M., Liu, Y.-J., Sun, D., Toh, K.-C.: Efficient sparse semismooth Newton methods for the clustered Lasso problem. SIAM J. Optim. 29(3), 2026–2052 (2019)

    MathSciNet  Google Scholar 

  37. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    MathSciNet  Google Scholar 

  38. Liu, Y., Wen, Z., Yin, W.: A multiscale semi-smooth Newton method for optimal transport. J. Sci. Comput. 91(2), 1–29 (2022)

    MathSciNet  Google Scholar 

  39. Dinh The Luc and Siegfried Schaible: Generalized monotone nonsmooth maps. J. Convex Anal. 3, 195–206 (1996)

    MathSciNet  Google Scholar 

  40. Luo, Z.-Q., Tseng, P.: On the linear convergence of descent methods for convex essentially smooth minimization. SIAM J. Control. Optim. 30(2), 408–425 (1992)

    MathSciNet  Google Scholar 

  41. Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46(1), 157–178 (1993)

    MathSciNet  Google Scholar 

  42. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control. Optim. 15(6), 959–972 (1977)

    MathSciNet  Google Scholar 

  43. Milzarek, A: Numerical methods and second order theory for nonsmooth problems. PhD thesis, Technische Universität München, (2016)

  44. Milzarek, A., Ulbrich, M.: A semismooth Newton method with multidimensional filter globalization for \(\ell _1\)-optimization. SIAM J. Optim. 24(1), 298–333 (2014)

    MathSciNet  Google Scholar 

  45. Milzarek, A., Xiao, X., Cen, S., Wen, Z., Ulbrich, M.: A stochastic semismooth Newton method for nonsmooth nonconvex optimization. SIAM J. Optim. 29(4), 2916–2948 (2019)

    MathSciNet  Google Scholar 

  46. Nocedal, J., Wright, S.: Numerical optimization. Science 35(67–68), 7 (1999)

    Google Scholar 

  47. Pang, J.-S.: A posteriori error bounds for the linearly-constrained variational inequality problem. Math. Oper. Res. 12(3), 474–484 (1987)

    MathSciNet  Google Scholar 

  48. Pang, J.-S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3(3), 443–465 (1993)

    MathSciNet  Google Scholar 

  49. Poliquin, R.A., Rockafellar, T.R.: Generalized Hessian properties of regularized nonsmooth functions. SIAM J. Optim. 6(4), 1121–1137 (1996)

    MathSciNet  Google Scholar 

  50. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18(1), 227–244 (1993)

    MathSciNet  Google Scholar 

  51. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58(1), 353–367 (1993)

    MathSciNet  Google Scholar 

  52. Rockafellar, T.R.: First-and second-order epi-differentiability in nonlinear programming. Trans. Am. Math. Soc. 307(1), 75–108 (1988)

    MathSciNet  Google Scholar 

  53. Rockafellar, T R., Wets, Roger J.-B.: Variational analysis, volume 317. Springer Science & Business Media, (2009)

  54. Shapiro, A.: On a class of nonsmooth composite functions. Math. Oper. Res. 28(4), 677–692 (2003)

    MathSciNet  Google Scholar 

  55. Stella, L., Themelis, A., Patrinos, P.: Forward-backward quasi-Newton methods for nonsmooth optimization problems. Comput. Optim. Appl. 67(3), 443–487 (2017)

    MathSciNet  Google Scholar 

  56. Themelis, A, Ahookhosh, M, Patrinos, P: On the acceleration of forward-backward splitting via an inexact Newton method. Splitting Algorithms, Modern Operator Theory, and Applications, pages 363–412, (2019)

  57. Themelis, A., Stella, L., Patrinos, P.: Forward-backward envelope for the sum of two nonconvex functions: Further properties and nonmonotone linesearch algorithms. SIAM J. Optim. 28(3), 2274–2303 (2018)

    MathSciNet  Google Scholar 

  58. Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Program. 125(2), 263–295 (2010)

    MathSciNet  Google Scholar 

  59. Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. J. Sci. Comput. 76(1), 364–389 (2018)

    MathSciNet  Google Scholar 

  60. Yamashita, N, Fukushima, M: On the rate of convergence of the Levenberg–Marquardt method. In Topics in Numerical Analysis: With Special Emphasis on Nonlinear Problems, pages 239–249. Springer, (2001)

  61. Yan, M, Yin, W: Self equivalence of the alternating direction method of multipliers. Splitting Methods in Communication, Imaging, Science, and Engineering, pages 165–194, (2016)

  62. Yang, L., Sun, D., Toh, K.-C.: SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7(3), 331–366 (2015)

    MathSciNet  Google Scholar 

  63. Yang, M, Milzarek, A, Wen, Z, Zhang, T: A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization. Mathematical Programming, pages 1–47, (2021)

  64. Yue, M.-C., Zhou, Z., So, A.M.-C.: A family of inexact SQA methods for non-smooth convex minimization with provable convergence guarantees based on the Luo-Tseng error bound property. Math. Program. 174(1), 327–358 (2019)

    MathSciNet  Google Scholar 

  65. Zhao, X.-Y., Sun, D., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)

    MathSciNet  Google Scholar 

  66. Zhou, G., Qi, L.: On the convergence of an inexact Newton-type method. Oper. Res. Lett. 34(6), 647–652 (2006)

    MathSciNet  Google Scholar 

  67. Zhou, G., Toh, K.-C.: Superlinear convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory Appl. 125(1), 205–221 (2005)

    MathSciNet  Google Scholar 

  68. Zirui, Z., Anthony Man-Cho, S.: A unified approach to error bounds for structured convex optimization problems. Math. Program. 165(2), 689–728 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the (associate) editor and anonymous referees for their detailed and valuable comments and suggestions.

Funding

This work was supported in part by the National Natural Science Foundation of China under the grant numbers 12331010 and 12288101, and National Key Research and Development Program of China under the grant number 2024YFA1012903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghua Tian.

Ethics declarations

Conflict of interest

The authors have no relevant financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Tian, T., Pan, S. et al. On the Analysis of Semismooth Newton-Type Methods for Composite Optimization. J Sci Comput 103, 59 (2025). https://doi.org/10.1007/s10915-025-02867-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-025-02867-4

Keywords

Mathematics Subject Classification

Profiles

  1. Tonghua Tian