Skip to main content

Advertisement

Log in

Analysis of Normal Human Eye with Different Age Groups using Infrared Images

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The human body temperature is a good health indicator. All objects emit thermal radiation as a function temperature and wavelength for all wavelengths. The wavelength of infrared rays lies between visible and microwave radiations ranging between 700 nm to 0.1 mm. Infrared (IR) imaging is relatively inexpensive, noninvasive and harmless. Nowadays, it is widely used in the medical field for diagnosis. In this work, we have applied image processing techniques on the IR images of the eye for the analysis of the ocular surface temperature (OST) of the normal subjects of three categories (young, middle and old ages). In our study, 67 IR normal images were analyzed. Two parameters, average ocular temperature and the temperature deviation were proposed to study the variability of OST in different normal category subjects. Our study shows that, the two parameters proposed, show distinct ranges for different groups with ‘p’ values less than 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acharya, U. R., Ng, E. Y. K., Min, L. C., Chee, C., Gupta, M., and Suri, J. S., Automatic identification of anterior segment eye abnormalities in optical images, Chapter 4, Image modeling of human eye). Artech House, Norwood, 2008a, May.

    Google Scholar 

  2. Acharya, U. R., Ng, E. Y. K., and Suri, J. S., Imaging systems of human eye: a review. J. Med. Syst. USA 32(4):301–315, 2008b.

    Article  Google Scholar 

  3. Alio, J., and Padron, M., Normal variations in the thermographic pattern of the orbito-ocular region. Diagn. Imag. 51:93–98, 1982a.

    Google Scholar 

  4. Alio, J., and Padron, M., Influence of age on the temperature of the anterior segment of the eye. Ophthalmic Res. 14:153–159, 1982b.

    Article  Google Scholar 

  5. Betney, S., Morgan, P. B., Doyle, S. J., and Efron, N., Corneal temperature changes during photorefractive keratectomy. Cornea. 16:158–161, 1997.

    Google Scholar 

  6. Cameo, Thermosensitive lichen amyloidosis. Int. J. Dermatol. 43(12):925–928, 2004, doi:10.1111/j.1365-4632.2004.02273.x.

    Article  Google Scholar 

  7. Cardona, G., Morgan, P. B., Efron, N., and Tullo, A. B., Ocular and skin temperature in ophthalmic postherpetic neuralgia. Pain Clin. 9:145–150, 1996.

    Google Scholar 

  8. Efron, N., Young, G., and Brennan, N., Ocular surface temperature. Curr. Eye Res. 8:901–906, 1989.

    Google Scholar 

  9. Fielder, A. R., Winder, A. F., Sheridaidah, G. A. K., and Cooke, E. D., Problems with corneal arcus. Trans. Ophthalmol. Soc. U. K. 101:22–26, 1981.

    Google Scholar 

  10. Freeman, R. D., and Fatt, I., Environmental influences on ocular temperature. Invest. Ophthalmol. 12(8):596–602, 1973.

    Google Scholar 

  11. Galassi, F., Giambene, B., Corvi, A., and Falaschi, G., Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and colour Doppler imaging in patients with glaucoma. Br. J. Ophthalmol. 91(7):878–881, 2007, doi:10.1136/bjo.2007.114397.

    Article  Google Scholar 

  12. Gonzalez, R. C., and Wintz, P., Digital image processing, 2nd edition. Addison-Wesley, Reading, 1987.

    Google Scholar 

  13. http://technocrat.net/d/2007/6/16/21627 (last accessed on 10th February 2008).

  14. http://www.escrs.org/eurotimes/March2003/thermo.asp (last accessed on 16th April. 2007).

  15. Holmberg, A., The temperature of the eye during application of hot packs and after milk injections. Acta Ophthalmol. (Copenh.). 30:347–364, 1952.

    Article  Google Scholar 

  16. Jones, B. F., A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans. Med. Imag. 17(6):1019, 1998, doi:10.1109/42.746635.

    Article  Google Scholar 

  17. Maldonado-Codina, C., Morgan, P. B., and Efron, N., Thermal consequences of photorefractive keratectomy. Cornea. 20:509–515, 2001, doi:10.1097/00003226-200107000-00014.

    Article  Google Scholar 

  18. Mapstone, R., Determinants of corneal temperature. Br. J. Ophthalmol. 52:729–741, 1968, doi:10.1136/bjo.52.10.729.

    Article  Google Scholar 

  19. Morgan, P. B., Soh, M. P., Efron, N., and Tullo, A. B., Potential applications of ocular thermography. Optom. Vis. Sci. 70(7):568–576, 1993, doi:10.1097/00006324-199307000-00008.

    Article  Google Scholar 

  20. Morgan, P. B., Smyth, J. V., Tullo, A. B., and Efron, N., Ocular temperature in carotid artery stenosis. Optom. Vis. Sci. 76(12):850–854, 1999a, doi:10.1097/00006324-199912000-00021.

    Article  Google Scholar 

  21. Morgan, P. B., Soh, M. P., and Efron, N., Corneal surface temperature decrease with age. Contact Lens Anterior Eye. 22:11–13, 1999b, doi:10.1016/S1367-0484(99)80025-3.

    Article  Google Scholar 

  22. Ng, E. Y. K., Fok, S. C., Peh, Y. C., Ng, F. C., and Sim, L. S., Computerized detection of breast cancer with artificial intelligence and thermograms. Int. J. Med. Eng. Technol. 26(4):152–157, 2002.

    Article  Google Scholar 

  23. Ng, E. Y. K., Ooi, E. H., Chee, C., and Acharya, U. R., Variations of ocular surface temperature with different age groups, Chapter 17, Image modeling of human eye. Artech House, Norwood, 2008.

    Google Scholar 

  24. Purslow, C., and Wolffsohn, J. S., Ocular surface temperature: a review. Eye Contact Lens. 31(3):117–123, 2005, doi:10.1097/01.ICL.0000141921.80061.17.

    Article  Google Scholar 

  25. Tan, T. G., Acharya, U. R., and Ng, E. Y. K., Automated identification of eye diseases using higher order spectra. J. Mech. Med. Biol. 8(1):121–136, 2008, doi:10.1142/S0219519408002504.

    Article  Google Scholar 

  26. Wittig, I., Kohlmann, H., Lommatzsch, P. K., Kruger, L., and Herold, H., Static and dynamic infrared thermometry and thermography in malignant melanoma of the uvea and conjunctiva. Klin. Mon.bl. Augenheilkd. 201:317–321, 1992.

    Article  Google Scholar 

  27. Zelichowska, B. B., Rózycki, R., Tłustochowicz, M., Kujawa, A., Kalicki, B., and Murawski, P., Przydatnosìcì termografii w diagnostyce zespołu suchego oka [The usefulness of thermography in the diagnostics of dry eye syndrome]. Klin. Oczna. 107(7–9):483–487, 2005.

    Google Scholar 

  28. Yuille, A. L., Cohen, D. S., and Hallinan, P. W., Feature extraction from faces using deformable templates. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 104–109, 1989.

Download references

Acknowledgement

This study is partly supported by the grant-in-aid of Tote Fund, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Acharya U.

Rights and permissions

Reprints and permissions

About this article

Cite this article

U, R.A., Ng, E.Y.K., Yee, G.C. et al. Analysis of Normal Human Eye with Different Age Groups using Infrared Images. J Med Syst 33, 207–213 (2009). https://doi.org/10.1007/s10916-008-9181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9181-5

Keywords

Navigation