Skip to main content

Advertisement

Log in

Medical Diagnosis Using Adaptive Perceptive Particle Swarm Optimization and Its Hardware Realization using Field Programmable Gate Array

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The paper proposes to develop a field programmable gate array (FPGA) based low cost, low power and high speed novel diagnostic system that can detect in absence of the physician the approaching critical condition of a patient at an early stage and is thus suitable for diagnosis of patients in the rural areas of developing countries where availability of physicians and availability of power is really scarce. The diagnostic system could be installed in health care centres of rural areas where patients can register themselves for periodic diagnoses and thereby detect potential health hazards at an early stage. Multiple pathophysiological parameters with different weights are involved in diagnosing a particular disease. A novel variation of particle swarm optimization called as adaptive perceptive particle swarm optimization has been proposed to determine the optimal weights of these pathophysiological parameters for a more accurate diagnosis. The FPGA based smart system has been applied for early detection of renal criticality of patients. For renal diagnosis, body mass index, glucose, urea, creatinine, systolic and diastolic blood pressures have been considered as pathophysiological parameters. The detection of approaching critical condition of a patient by the instrument has also been validated with the standard Cockford Gault Equation to verify whether the patient is really approaching a critical condition or not. Using Bayesian analysis on the population of 80 patients under study an accuracy of up to 97.5% in renal diagnosis has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kukar, M., Transductive reliability estimation in medical diagnosis. Artif. Intell. Med. 29:81–106, 2003 doi:10.1016/S0933-3657(03)00043-5.

    Article  Google Scholar 

  2. Indian Medical Society, Technical report of technical working group on telemedicine standardization. Technical Report, Indian Medical Society, May 2003.

  3. Rural Community Development Program, http://www.rcdpnepal.com/india/india_health_sector.php

  4. Eren, A., Subasi, A., and Coskun, O., A decision support system for telemedicine through the mobile telecommunications platform. J. Med. Syst. 32(1):31–35, 2008 doi:10.1007/s10916-007-9104-x.

    Article  Google Scholar 

  5. Fidan, U., and Guler, N. F., A four channel biotelemetry system employing indoor. J. Med. Syst. 31(3):159–165, 2007 doi:10.1007/s10916-006-9029-9.

    Article  Google Scholar 

  6. Walczak, S., A multiagent architecture for developing medical information retrieval agents. J. Med. Syst. 27(5):479–498, 2003 doi:10.1023/A:1025668124244.

    Article  Google Scholar 

  7. Kuziemsky, C. E., Laul, F., and Leung, F. C., A review on diffusion of personal digital assistants in healthcare. J. Med. Syst. 29(4):335–342, 2005 doi:10.1007/s10916-005-5893-y.

    Article  Google Scholar 

  8. Hashiba, M., Matsuto, T., Arai, F., Yamakawa, T., and Azakawa, K., Accessing endoscopic images for remote conference and diagnosis using WWW server with a secure socket layer. J. Med. Syst. 24(6):333–338, 2000 doi:10.1023/A:1005596610165.

    Article  Google Scholar 

  9. Druzovec, M., Welzer, T., and Brumen, B., Agent oriented approach to handling medical data. J. Med. Syst. 29(1):45–57, 2005 doi:10.1007/s10916-005-1103-1.

    Article  Google Scholar 

  10. Neill, R. A., Mainous, A. G., Clark, J. R., and Hagen, M. D., The utility of electronic mail as a medium for patient-physician communication. Arch. Fam. Med. 3:268–271, 1994 doi:10.1001/archfami.3.3.268.

    Article  Google Scholar 

  11. Halvorsen, P. A., and Kristiansen, I. S., Radiology services for remote communities: cost minimisation study of telemedicine. Biom. J. 312(3):1333–1336, 1996.

    Google Scholar 

  12. Fery-Lemonnier, E., Brayda, F., Charpentier, E., Couturon, I., Fay, A., and Souag, A., Transmission interhospitaliere d'images radiologiques pour la prise en charge des urgences neurochirurgicales Resultats de l'evaluation. Comité d'Evaluation et de Diffusion des Innovations Technologiques (CEDIT), Paris, 1996.

    Google Scholar 

  13. Bailes, J. E., Poole, C. C., Hutchison, W., Maroon, J. C., and Fukushima, T., Utilization and cost savings of a wide-area computer network for neurosurgical consultation. J. Telemed. 3:135–139, 1997.

    Google Scholar 

  14. Goh, K. Y. C., Lam, C. K., and Poon, W. S., The impact of teleradiology on the inter-hospital transfer of neurosurgical patients. Br. J. Neurosurg. 11:52–56, 1997 doi:10.1080/02688699746708.

    Article  Google Scholar 

  15. Heautot, J. F., Gibaud, B., Catroux, B., Thoreux, P. H., Cordonnier, E., and Scarabin, J. M., Influence of the teleradiology technology (N-ISDN and ATM) on the inter-hospital management of neurosurgical patients. Med. Inform. (Lond.). 24:121–134, 1999.

    Article  Google Scholar 

  16. Hailey, D., and Jacobs, P., Assessment of telehealth applications. Alberta Heritage Foundation for Medical Research, Edmonton (Alta), 1997.

    Google Scholar 

  17. Wootton, R., Telemedicine: a cautious welcome. J. Biomed. 313:1375–1377, 1996.

    Google Scholar 

  18. Brecht, R. M., Gray, C. L., Peterson, C., and Youngblood, B., The University of Texas Medical Branch—Texas Department of Criminal Justice Telemedicine Project: findings from the first year of operation. J. Telemed. 2:25–35, 1996.

    Google Scholar 

  19. McCue, M. J., Mazmanian, P. E., Hampton, C., Marks, T. K., Fisher, E., and Parpart, F., The case of Powhatan Correctional Center/Virginia Department of Corrections and Virginia Commonwealth University/Medical College of Virginia. J. Telemed. 3(1):11–17, 1997.

    Google Scholar 

  20. Crump, W. J., and Tessen, R. J., Communication in integrated practice networks: using interactive video technology to build the medical office without walls. Tex. Med. Inform. 93:70–74, 1997.

    Google Scholar 

  21. House, A. M., and Roberts, J. M., Telemedicine in Canada. Can. Med. Assoc. J. 117(4):386–388, 1977.

    Google Scholar 

  22. Murphy, R. L., and Bird, K. T., Telediagnosis: a new community health resource; observations on the feasibility of telediagnosis based on 1000 patient transactions. Am. J. Public Health. 64(2):113–119, 1974.

    Article  Google Scholar 

  23. Murphy, R. L., Fitzpatrick, T. B., Haynes, H. A., Bird, K. T., and Sheridan, T. B., Accuracy of dermatologic diagnosis by television. Arch. Dermatol. 105(6):833–835, 1972 doi:10.1001/archderm.105.6.833.

    Article  Google Scholar 

  24. Watson, D. S., Telemedicine. Med. J. Aust. 151(2):62–66, 1989.

    Google Scholar 

  25. Davis, J. G., Final report: Video requirements for remote medical diagnosis. Southern Hospice Foundation, Inc., Houston, 1974.

    Google Scholar 

  26. Li, J., and Wong, L., Using rules to analyze biomedical data: comparison between C4.5 and PCL. Institute for Infocomm Research, Singapore, 2003Technical Report.

    Google Scholar 

  27. Ghennad Rezaie, M., Soltanain-Zadeh, H., Siadat, M. R., and Elisevich, K. V., Medical Data Mining using Particle Swarm Optimization for Temporal Lobe Epilepsy. Proceedings of IEEE Congress on Evolutionary Computation, Vancouver Canada, IEEE Press, Vol. 1447, pp. 761–768, 2006 (Edited by: Garg G. Yen, Simon M. Lucas, Gary Fogel, Graham Kendell, Ralf Solomon, Byoung Tak Zhang, Carlos A. Coello, Thomas Philip Runarssen).

  28. Larranaga, P., Learning Bayesian networks from data: some applications in biomedicine. Intelligent System Group, Department of Computer Science and Artificial Intelligence, University of Basque, Basque, 2002technical report.

    Google Scholar 

  29. Kazi, J. I., Furness, P. N., Nicholson, M., Ahmed, E., Akhter, F., Naqvi, A. et al., Interinstitutional variation in the performance of Bayesian belief network for the diagnosis of acute renal graft rejection. Transplant. Proc. Elsevier. 31(8):31–52, 1999. Editor: Barry D. Kahan.

    Google Scholar 

  30. Keneddy, J., The behavior of particles. In: William Porto, V., Saravanan, N., Waagen, D. E., and Eiben, A. E. (Eds.), Proceedings of Evolutionary Programming ConferenceVol. 8. Springer, London, pp. 32–37, 1998.

    Google Scholar 

  31. Bäck, T., Fogel, D., and Michalewicz, Z., Handbook of Evolutionary Computation. IOP Publishing and Oxford University Press, New York, 1997.

    Book  MATH  Google Scholar 

  32. Schwefel, H.-P., Evolution and optimum seeking. Wiley, New York, 1995.

    Google Scholar 

  33. Kennedy, J., and Ebarhart, R. C., Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks November 27December 1, Perth, Australia, IEEE Service Centre, Piscataway, New Jersey, Vol. 4, pp. 1942–1948, 1995.

  34. Gott, M., Telematics for health: the role of telemedicine in homes and communities. Radcliffe Med. Press, Oxford, 1995.

    Google Scholar 

  35. Abido, M. A., Optimal design of power system stabilizers using particle swarm optimization. IEEE Trans. Energ. Convers. 17(3):406–413, 2002 doi:10.1109/TEC.2002.801992.

    Article  Google Scholar 

  36. Agrafiotis, D. K., and Cedeno, W., Feature selection for structure–activity correlation using binary particle swarms. J. Med. Chem. 45(5):1098–1107, 2002 doi:10.1021/jm0104668.

    Article  Google Scholar 

  37. Fourie, C., and Groenwold, A. A., The particle swarm optimization algorithm in size and shape optimization. Struct. Multidisciplinary Optim. 23:259–267, 2002 doi:10.1007/s00158-002-0188-0.

    Article  Google Scholar 

  38. Ourique, C. O., Biscaia, E. C., and Carlos Pinto, J., The use of particle swarm optimization for dynamical analysis in chemical processes. Comput. Chem. Eng. 26:1783–1793, 2002 doi:10.1016/S0098-1354(02)00153-9.

    Article  Google Scholar 

  39. Parsopoulos, K. E., and Vrahatis, M. N., Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1(2–3):235–306, 2002 doi:10.1023/A:1016568309421.

    Article  MATH  MathSciNet  Google Scholar 

  40. Parsopoulos, K. E., and Vrahatis, M. N., On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput. 8(3):211–224, 2004 doi:10.1109/TEVC.2004.826076.

    Article  MathSciNet  Google Scholar 

  41. Parsopoulos, K. E., Papageorgiou, E. I., Groumpos, P. P., and Vrahatis, M. N., Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. Lect. Notes Comput. Sci. 3102:402–413, 2004.

    Google Scholar 

  42. Parsopoulos, K. E., and Vrahatis, M. N., Unified particle swarm optimization in dynamic environments. Lect. Notes Comput. Sci. 3449:590–599, 2005.

    Article  Google Scholar 

  43. Ray, T., and Liew, K. M., A swarm metaphor for multiobjective design optimization. Eng. Optim. 34(2):141–153, 2002 doi:10.1080/03052150210915.

    Article  Google Scholar 

  44. Parsopoulos, K. E., and Vrahatis, M. N., UPSO: A unified particle swarm optimization scheme. Proceedings of the International Conference of Computational Methods in Sciences and Engineering ICCMSE 2004, Lecture Series on Computer and Computational Sciences Vol. 1. VSP International Science Publishers, Zeist, The Netherlands, pp. 868–873, 2004.

  45. Parsopoulos, K. E., and Vrahatis, M. N., Parameter selection and adaptation in Unified Particle Swarm Optimization. Math. Comput. Model. 46(1–2):198–213, 2007 doi:10.1016/j.mcm.2006.12.019.

    Article  MATH  MathSciNet  Google Scholar 

  46. Kathiravan, R., and Ganguli, R., Strength design of composite beam using gradient and particle swarm optimization. Compos. Struct. 81(4):471–479, 2007.

    Article  Google Scholar 

  47. Suresh, S., Sujit, P. B., and Rao, A. K., Particle swarm optimization approach for multi-objective composite box-beam design. Compos. Struct. 81(4):598–605, 2007 doi:10.1016/j.compstruct.2006.09.007.

    Article  Google Scholar 

  48. Feng, H., Chen, C., and Ye, F., Evolutionary fuzzy particle optimization vector quantization learning in image compression. Expert Syst. Appl. 32:213–222, 2007 doi:10.1016/j.eswa.2005.11.012.

    Article  Google Scholar 

  49. Bonabeau, E., Dorigo, M., and Théraulaz, G., From natural to artificial swarm intelligence. Oxford University Press, New York, 1999.

    MATH  Google Scholar 

  50. Kennedy, J., and Eberhart, R. C., Swarm Intelligence, Morgan Kaufmann, 2001.

  51. Kaewkamnerdpong, B., and Bentley, P., Perceptive Particle Swarm Optimization: An investigation. Proc. IEEE Symp. Swarm Intell. IEEE CS Press 1(1), 8–10 (2005)

  52. Saldam, A., Ahmad, I., and Al-Madani, S., Particle swarm optimization for task assignment problem. Microprocess. Microsyst. 26:363–371, 2002 doi:10.1016/S0141-9331(02)00053-4.

    Article  Google Scholar 

  53. Xiaohui, H., Eberhart, R. C., and Yuhui, S., Particle Swarm with extended memory for multiobjective optimization. Proc. IEEE Swarm Intell. Symp. Indianap. USAIEEE Press 1, 193–197 (2003)

  54. Roy Chowdhury, S., Chakrabarti, D., and Saha, H., FPGA realization of a Smart Processing System for Clinical Diagnostic Applications using Pipelined Datapath Architectures. Microprocess. Microsyst. 32(2):107–120, 2008 doi:10.1016/j.micpro.2007.12.001.

    Article  Google Scholar 

  55. Gibbs, A. L., and Braunwald, E., Primary cardiology. Saunders: Philadelphia, 1998.

    Google Scholar 

  56. Kasper, D. L., Braunwald, E., Hauser, S., Longo, D., Jameson, J. L., and Fauci, A. S., Harrison’s Principle of Internal Medicine, 16th edition. McGraw Hill, New York, 2008.

    Google Scholar 

  57. Gibbs, A. L., and Braunwald, E., Primary cardiology. Saunders, Philadelphia, 1998.

    Google Scholar 

  58. Olona-Cabases, M., The probability of a correct diagnosis. In: Candell-Riera, J., and Ortega-Alcalde, D. (Eds.), Nuclear Cardiology in Everyday Practice348–357, 1994.

  59. Lee, K. H., A first course on fuzzy theory and application. Springer Verlag, Germany, 2005.

    Google Scholar 

  60. Fletcher, B. H., FPGA embedded processors: revealing true system performance. Proceedings of Embedded System Conference, Vol. 1, No. 1, pp 11–31, San Francisco, 2005

Download references

Acknowledgements

The authors would like to thank the Ministry of Communications and Information Technology, Government of India for providing the necessary fund to carry out the research work. The authors would like to thank Dr. Kaushik Chakraborty of Chittaranjan National Medical College and Hospital for his relentless support in providing the patient data. Thanks are also due to Dr. Chirasree Roy Chaudhuri of Bengal Engineering and Science University and Dr. Soumyabrata Roy Chaudhuri of Woodlands Hospital and Medical Research Centre for giving valuable suggestions regarding the validation of the system. The authors would also like to thank Prof. Amit Konar of the Department of Electronics and Telecommunication Engineering, Jadavpur University for his suggestions during the development of the system. Thanks are also due to Mr. Rajib Samadder for his support during the FPGA based implementation of the system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmay Saha.

Appendix

Appendix

The pseudo-code of the APPSO4 algorithm is stated below.:

Algorithm APPSO4

Input: Randomly initialize position and velocity of particles in an n + 1 dimensional search space in case of an n dimensional problem;

Output: Position of the approximate global optimum;

Begin

Initialize the perception radius, the maximum and minimum number of observing directions, maximum and minimum number of sample points along any observing direction and the maximum velocity of a particle;

/*This is also the minimum number of observing directions and minimum number of sampling points along any direction*/

Set personal best position of a particle as the initial position of the particle;

While terminating condition not reached do

Begin

For I =1 to number of particles

Randomly choose the position of the neighboring particle;

Update the local best position;

Update the velocity of particle;

Evaluate the fitness function;

If the present performance is better than the performance at personal best position then

Update personal best position of the particle;

Minimize the spacing between the sample points along any direction within limits;

Increase the number of sampling directions within limits;

Else if the present performance is worse than the performance at personal best position then

Increase the spacing between the sample points along any direction within limits;

Minimize the number of sampling directions within limits;

Else

Keep the spacing between the sample points and the number of sampling directions unaltered;

End if;

End if;

Increment I;

End for;

End while;

End

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy Chowdhury, S., Chakrabarti, D. & Saha, H. Medical Diagnosis Using Adaptive Perceptive Particle Swarm Optimization and Its Hardware Realization using Field Programmable Gate Array. J Med Syst 33, 447–465 (2009). https://doi.org/10.1007/s10916-008-9206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9206-0

Keywords

Navigation