Skip to main content

Advertisement

Log in

A Comparative Study on Chronic Obstructive Pulmonary and Pneumonia Diseases Diagnosis using Neural Networks and Artificial Immune System

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Millions of people are diagnosed every year with a chest disease in the world. Chronic obstructive pulmonary and pneumonia diseases are two of the most important chest diseases. And these are very common illnesses in Turkey. In this paper, a comparative study on chronic obstructive pulmonary and pneumonia diseases diagnosis was realized by using neural networks and artificial immune systems. For this purpose, three different neural networks structures and one artificial immune system were used. Used neural network structures in this study were multilayer, probabilistic, and learning vector quantization neural networks. The results of the study were compared with the results of the pervious similar studies reported focusing on chronic obstructive pulmonary and pneumonia diseases diagnosis. The chronic obstructive pulmonary and pneumonia diseases dataset were prepared from a chest diseases hospital’s database using patient’s epicrisis reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. MedHelp. http://www.medhelp.org/Medical-Dictionary/Terms/2/8964.htm

  2. Molfino, N. A., and Jeffery, P. K., Chronic obstructive pulmonary disease: histopathology, inflammation and potential therapies. Pulm. Pharmacol. Ther. 20:5462–472, 2007.

    Article  Google Scholar 

  3. Molfino, N. A., Drugs in clinical development for chronic obstructive pulmonary disease. Respiration 72:1105–112, 2005. doi:10.1159/000083411.

    Article  Google Scholar 

  4. Jeffery, P. K., Structural and inflammatory changes in COPD: a comparison with asthma. Thorax. 53:2129–136, 1998.

    Article  Google Scholar 

  5. ehealth MD. http://www.ehealthmd.com/library/pneumonia/PNM_whatis.html

  6. BC Health Guide. http://www.bchealthguide.org/kbase/topic/major/hw63868/descrip.htm

  7. Sönmez, S., and Uzaslan, E., Kronik Obstrüktif Akciğer Hastalığı’nın Genetiği ve Sitokin Gen Polimorfizmi–Derleme. Arch. Lung Cilt. 7:75–78, 2006.

    Google Scholar 

  8. Global Action Plan for the Prevention and Control of Pneumonia (GAPP). (2007). Report of an informal consultation. La Mainaz, Gex, France, 5–7 March 2007.

  9. Samurkaşoğlu, B. Epidemiyoloji ve risk faktörleri. In: Saryal S. B., and Acican, T., (Eds.). Güncel Bilgiler Işığında KOAH. Ankara: Bilimsel Tıp Yayınevi. Sayfa: 9–19, 2003.

  10. Toraman, Y. A. Stabil Kronik Obstrüktif Akciğer Hastalarında İnflamatuar Belirteçler; C-Reaktif Protein, Fibrinojen Ve Lökosit. T.C. Sağlık Bakanlığı Yedikule Göğüs Hastalıkları Ve Göğüs Cerrahisi Eğitim Ve Araştırma Hastanesi, İstanbul, 2006.

  11. Gogus Hastaliklari Hastanesi. http://www.trabzonghh.gov.tr/hastalik.asp?id=10

  12. Kayaer, K., and Yıldırım, T. Medical Diagnosis on Pima Indian Diabetes Using General Regression Neural Networks. In Proc. of International Conference on Artificial Neural Networks and Neural Information Processing (ICANN/ICONIP), Istanbul, 181–184, 2003.

  13. Delen, D., Walker, G., and Kadam, A., Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. Artif. Intell. Med. 34:2113–127, 2005. doi:10.1016/j.artmed.2004.07.002.

    Google Scholar 

  14. Temurtas, F. A comparative study on thyroid disease diagnosis using neural networks. Expert Systems With Applications, 2007, doi:10.1016/j.eswa.2007.10.010.

  15. Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning internal representations by error propagation. In: Rumelhart, D. E., and McClelland, J. L. (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1st edition. MIT, Cambridge, pp. 318–362, 1986.

    Google Scholar 

  16. Brent, R. P., Fast training algorithms for multi-layer neural nets. IEEE Trans. Neural Netw. 2:346–354, 1991. doi:10.1109/72.97911.

    Article  Google Scholar 

  17. Gori, M., and Tesi, A., On the problem of local minima in backpropagation. IEEE Trans. Pattern Anal. Mach. Intell. 14:76–85, 1992. doi:10.1109/34.107014.

    Article  Google Scholar 

  18. Hagan, M. T., and Menhaj, M., Training feed forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5:989–993, 1994. doi:10.1109/72.329697.

    Article  Google Scholar 

  19. Hagan, M. T., Demuth, H. B., and Beale, M. H., Neural Network Design. PWS, Boston, 1996.

    Google Scholar 

  20. Gulbag, A., and Temurtas, F., A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro fuzzy inference systems. Sens. Actuators B Chem. 115:252–262, 2006. doi:10.1016/j.snb.2005.09.009.

    Article  Google Scholar 

  21. Specht, D. F., Probabilistic neural networks. Neural Netw. 3:109–118, 1990. doi:10.1016/0893-6080(90)90049-Q.

    Article  Google Scholar 

  22. Kohonen, T. Improved versions of learning vector quantization. In Proc. of the IEEE International Joint Conference on Neural Networks, New York, pp. 545–550, 1990.

  23. Kohonen, T., Self-Organizing Maps, 2nd edition. Springer, Berlin, 1997.

    MATH  Google Scholar 

  24. Matlab® Documentation. Version 7.0, Release 14, The MathWorks, Inc, 2004.

  25. Engin, O., and Döyen, A., Artificial immune systems and applications in industrial problems. G.U. J. Sci. 17:171–84, 2004.

    Google Scholar 

  26. Dasgupta, D. Advances in Artificial Immune Systems. EEE Computational Intelligence Magazine, University of Memphis, pp. 40–49, November 2006.

  27. Ashizawa, K., Ishida, T., MacMahon, H., Vyborny, C. J., Katsuragawa, S., Doi, K. et al, Artificial neural networks in chest radiography: application to the differential diagnosis of interstitial lung disease. Acad. Radiol. 11:129–37, 2005.

    Google Scholar 

  28. Coppini, G., Miniati, M., Paterni, M., Monti, S., and Ferdeghini, E. M., Computer-aided diagnosis of emphysema in COPD patients:Neural-network-based analysis of lung shape in digital chest radiographs. Med. Eng. Phys. 29:76–86, 2007. doi:10.1016/j.medengphy.2006.02.001.

    Article  Google Scholar 

  29. Heckerling, P. S., Gerber, B. S., Tape, T. G., and Wigton, R. S., Use of genetic algorithms for neural networks to predict community-acquired pneumonia. Artif. Intell. Med. 30:71–84, 2004. doi:10.1016/S0933-3657(03)00065-4.

    Article  Google Scholar 

  30. Heckerling, P. S., Parametric receiver operating characteristic (ROC) curve analysis using Mathematica. Comput. Methods Programs Biomed. 69:65–73, 2002. doi:10.1016/S0169-2607(01)00179-1.

    Article  Google Scholar 

  31. Gulbag, A., Temurtas, F., and Yusubov, I., Quantitative discrimination of the binary gas mixtures using a combinational structure of the probabilistic and multilayer neural networks. Sens. Actuators B Chem. 131:196–204, 2008. doi:10.1016/j.snb.2007.11.008.

    Article  Google Scholar 

  32. De Castro, L. N., and Timmis, J. A novel approach to pattern recognition. In: Alonso, L., and Corchado, J., and Fyfe, C. (Eds.), Artificial Neural Networks in pattern Recognition, University of Paisley, pp. 67–84, 2002.

  33. De Castro, L. N., and Von Zuben, F. J. Learning and optimization using the clonal selection principle. Artificial Immune Systems of the Journal IEEE Transactions on Evolutionary Computation, June 6(3), 2002.

  34. De Castro, L. N., and Von Zuben, F. J. The Clonal Selection Algorithm with Engineering Applications. GECCO 2000, Las Vegas, Nevada, USA, July 8, 2000.

  35. Watkins, A. AIRS: A resource limited artificial immune classifier. Master Thesis, Mississippi State University, 2001.

  36. Ozyılmaz, L., and Yıldırım, T. Diagnosis of thyroid disease using artificial neural network methods. In Proc. of ICONIP’02 9th international conference on neural information processing, Orchid Country Club, Singapore pp. 2033–2036, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feyzullah Temurtas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Er, O., Sertkaya, C., Temurtas, F. et al. A Comparative Study on Chronic Obstructive Pulmonary and Pneumonia Diseases Diagnosis using Neural Networks and Artificial Immune System. J Med Syst 33, 485–492 (2009). https://doi.org/10.1007/s10916-008-9209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9209-x

Keywords

Navigation