Abstract
The aim of this study is to evaluate the underlying etiologic factors of epilepsy patients and to predict the prognosis of these patients by using a Multi-Layer Perceptron Neural Network (MLPNN) according to risk factors. 758 patients with epilepsy diagnosis are included in this study. The MLPNNs were trained by the parameters of demographic properties of the patients and risk factors of the disease. The results show that the most crucial risk factor of the epilepsy patients was constituted by the febrile convulsion (21.9%), the kinship of parents (22.3%), the history of epileptic relatives (21.6%) and the history of head injury (18.6%). We had 91.1 % correct prediction rate for detection of the prognosis by using the MLPNN algorithm. The results indicate that the correct prediction rate of prognosis of the MLPNN model for epilepsy diseases is found satisfactory.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Melcon, M.O., Kochen, S.: Prognosis of epilepsy in a community-based study: 8 years of follow-up in an Argentine community. Acta. Neurol. Scand 112, 370–374 (2005). doi:10.1111/j.1600-0404.2005.00519.x
Sander, J.W.: Some aspects of prognosis in the epilepsies: a review. Epilepsia 34(6), 1007–1016 (1993). doi:10.1111/j.1528-1157.1993.tb02126.x
Macdonald, B.: The prognosis of epilepsy. Seizure 10, 347–358 (2001). doi:10.1053/seiz.2000.0523
Arts, W.F.M., Brouwer, O.F., Peters, A.C.B., Stroink, H., Peeters, E.A.J., Schmitz, P.I.M., Donselaar, C.A., Greets, A.T.: Course and prognosis of childhood epilepsy: 5 years follow-up of the Dutch study of epilepsy in childhood. Brain 127, 1774–1784 (2004). doi:10.1093/brain/awh200
Guo, X., et al.: Distinct serumal proteomic patterns between ascending and descending types of loco-regionally advanced nasopharyngeal carcinoma assed by surface enhanced laser desorption ionization and artificial neural network. Chin. Med. J 118(22), 1912–1917 (2005)
Jerez-Aragones, J.M., Gomez-Ruiz, J.A., Ramos-Jimenez, A., Munoz-Pereza, J., Alba-Conejo, E.: Combined neural network and decision trees model for prognosis of breast cancer relapse. Artif. Intell. Med 27, 45–63 (2003). doi:10.1016/S0933-3657(02)00086-6
Lisboa, P.J., Taktak, A.F.G.: The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19(4), 408–415 (2006). doi:10.1016/j.neunet.2005.10.007
Mian, S., et al.: Ser um proteomic fingerprinting discriminates between clinical stages and predicts disease progression in melanoma patients. J. Clin. Oncol 23(22), 5088–5093 (2005). doi:10.1200/JCO.2005.03.164
Modular Neural Networks for Medical Prognosis: Quantifying the Bene® ts of combining neural networks for survival prediction. Connect. Sci 9(1), 71–86 (1997). doi:10.1080/095400997116748
O'Neill, M.C., Song, L.: Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect. BMC Bioinformatics 4, 13 (2003). doi:10.1186/1471-2105-4-13
Ortiz, J.J., Ghefter, C.G., Silva, C.E., Sabbatini, R.M.: One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data. JACC 26(7)), 1586–1593 (1995)
Raj, E.B.: ‘Neural network’ algorithm to predict severity in epidermolysis bullosa simplex. Indian J. Dermatol. Venereol. Leprol 71(2), 106–108 (2005)
Tandon, R., Adak, S., Kaye, J.A.: Neural networks for longitudinal studies in Alzheimer’s disease. Artif. Intell. Med 36, 245–255 (2006). doi:10.1016/j.artmed.2005.10.007
Haykin, S.: Neural networks: A comprehensive foundation. Macmillan, New York (1994)
Krose, B., Smaget, P.V.D.: An Introduction to Neural Networks. The University of Amsterdam, (Amsterdam (1996)
The newsgroup for people who want to use or explore the capabilities of Artificial Neural Networks or Neural-Network-like structures. (SAS Institute Inc. 2002), (Accessed April 24, 2007 at ftp://ftp.sas.com/pub/neural/FAQ2.htm).
Subasi, A.: Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl 31, 320–328 (2006). doi:10.1016/j.eswa.2005.09.027
Alkan, A., Koklukaya, E., Subasi, A.: Automatic seizure detection in EEG using logistic regression and artificial neural network. J Neurosci Methods 148, 167–176 (2005)
Subasi, A., Erçelebi, E.: Classification of EEG signals using neural network and logistic regression. Comput. Methods Programs Biomed 78(2), 87–99 (2005). doi:10.1016/j.cmpb.2004.10.009
Kiymik, M.K., Subasi, A., Ozcalik, H.R.: Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J. Med. Syst 28(6), 511–523 (2004). doi:10.1023/B:JOMS.0000044954.85566.a9
Aslan, K., Bozdemir, H., Sahin, C., Ogulata, S.N., Erol, R.: A radial basis function neural network model for classification of epilepsy using EEG signals. J. Med. Syst 32(5), 403–408 (2008). doi:10.1007/s10916-008-9145-9
Sahin, C., Ogulata, S.N., Aslan, K., Bozdemir, H., Erol, R.: A neural network-based classification model for partial Epilepsy by EEG signals. Int. J. Pattern Recognit. Artif. Intell 22(5), 973–985 (2008). doi:10.1142/S0218001408006594
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, (New York (2000)
Bernand, E.: Optimization training neural nets. IEEE Trans. Neural Networks 3(2), 989–993 (1992)
Fontenla-Romero, O., Erdogmus, D., Principe, J. P., Alonso-Betanzos, A., Castillo, E., Accelerating the converge speed of neural networks learning methods using least squares. European Symposium on Artificial Neural Networks 255-260, 2003.
Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw 5(6), 989–993 (1994). doi:10.1109/72.329697
Wilamowki, B. M., Iqlikci, S., Kaynak, O., Onder, E. M., An algorithm for fast converges in training neural networks, IEEE Proceedings of International Joint Conference on Neural Networks 1778-1782, 2005.
Lera, G., Pinzolas, M.: A quasi-local Levenberg-Marquardt algorithm for neural network training. IEEE World Congress on Computational Intelligence 3, 2242–2246 (1998)
Manolis, I.A.L., Antonis, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? IEEE Proceedings of International Conference on Computer Vision 2, 1526–1531 (2005)
Neurosolutions for Excel: Neurodimension Inc. (Accessed January 11, 2007 at www.nd.com/download.), 2006.
Wheless, J.M., Kim, H.L.: Adolescent seizures and epilepsy syndromes. Epilepsia 43(s3), 33–52 (2002). doi:10.1046/j.1528-1157.43.s.3.12.x
Elwes, R.D.C., Chesterman, P., Reynold, E.H.: Prognosis after a first untreated tonic-clonic seizures. Lancet 2, 752–753 (1985). doi:10.1016/S0140-6736(85) 90631-2
Salvatore, G., Daniela, G., Vezzosi, P., Farnetani, M., Bartolo, R.M.D., Bazzotti, S., Morgese, G., Balestri, P.: Childhood absence epilepsy: evolution and prognostic factors. Epilepsia. 46(11), 1796–1801 (2005). doi:10.1111/j.1528-1167.2005.00277.x
Sander, J.W., Kwan, P.: The natural history of epilepsy: an epidemiological view. J. Neurol. Neurosurg. Psychiatry. 75, 1376–1381 (2004). doi:10.1136/jnnp. 2003.029223
Bittencourt, P.R.M., Adamolekum, B., Bharucha, N., Caprio, A., Cossio, O.H., Danesi, M.A., Dumas, M., Meinardi, H., Ordinario, A., Senanayake, N., Shakir, R., Sotelo, J.: Epilepsy in the topics: i. epidemiological, socioeconomic risk factors, and etiology. Epilepsia 37(11)), 1121–1127 (1996). doi:10.1111/j.1528-1157.1996.tb01035.x
Kotsopoulos, I., Krom, M., Kessels, F., Lodder, J., Troost, J., Twellaar, M., Merode, T., Knottnerus, A.: Incidence of epilepsy and predictive factors of epileptic and non-epileptic seizures. Seizure. 14, 175–182 (2005). doi:10.1016/j.seizure.2005.01.005
Elwes, R.D.C., Johnson, A.L., Reynolds, E.H.: The course of untreated Epilepsy. BMJ 297, 641–644 (1988)
Mohanraj, R., Brodie, M.J.: Outcome in newly diagnosed localization-related epilepsies. Seiuzure 14, 318–323 (2005). doi:10.1016/j.seizure.2005.04.002
Gruraj, A.K., Sztriha, L., Bener, A., Dawodu, A., Eapen, V.: Epilepsy in children with cerebral palsy. Seizure 12, 110–114 (2003). doi:10.1016/S1059131102002558
Engelsen, B.A., Gronning, M.: Epileptic patients with multiple sclerosis. Is the prognosis of epilepsy underestimated? Seizure 6, 377–382 (1997). doi:10.1016/S1059-1311(97)80037-4
Trouillas, P., Courjon, J.: Epilepsy with multiple sclerosis. Epilepsia. 13, 325–333 (1972). doi:10.1111/j.1528-1157.1972.tb05267.x
Murthy, J.M.K., Yangala, R.: Acute symptomatic seizures-incidence and etiological spectrum: a hospital—based study from South India. Seizure 8, 162–165 (1999). doi:10.1053/seiz.1998.0251
Murthy, J.M.K., Yangala, R.: Etiological spectrum of symtomatic localization related epilepsies: a study from South India. J Neurol. Scien 158, 65–70 (1998)
Forsgren, L., Heijbel, J., Nystrom, L., Sidenvall, R.: A follow-up of an incident case- referent study of febrile convulsions seven years after the onset. Seizure 6, 21–26 (1997). doi:10.1016/S1059-1311(97) 80048-9
Shinnar, S., Pellock, J.M., Berg, A.N., O’Dell, C., Driscoll, S.M., Maytal, J., Moshe, S.L., DeLorenzo, R.J.: Short-Term Outcomes of Children with Febrile Status Epilepticus. Epilepsia 42(1), 47–53 (2001). doi:10.1046/j.1528-1157.2001.10000.x
Paolucci, S., Silvestri, G., Lubich, S., Pratesi, L., Traballesi, M., Gigli, G.L.: Poststroke Late Seizures and Their Role in Rehabilation of Patients. Epilepsia 38(3), 266–270 (1997). doi:10.1111/j.1528-1157.1997.tb01115.x
Briellmann, R.S., Broers, Y.T., Berkovic, S.F.: Idiopathic Generalized Epilepsies: Do Sporadic and Familial Cases Differ? Epilepsia 42(11), 1399–1402 (2004). doi:10.1046/j.1528-1157.2001.03201.x
Winawer, M.R., Shinnar, S.: Genetic epidemiology of epilepsy or what do we tell families? Epilepsia 46((s10), 24–30 (2005). doi:10.1111/j.1528-1167.2005.00354.x
Singh, R., Scheffer, I.E., Crossland, K., Berkovic, S.F.: Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann. Neurol 45, 75–81 (1999). 10.1002/1531-8249(199901)45:1 < 75::AID-ART13 > 3.0.CO;2-W
Dybowski, R., Neural computation in medicine: perspectives and prospects. In: Malmgren, H., Borga, M., Niklasson, L., (Ed.) Proceedings of the ANNIMAB-1 Conference (Artificial Neural Networks in Medicine and Biology), (Springer- Verlag; Goteborg 26-36, 2000.
Lisboa, P.J.: A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw 15(1), 11–39 (2002). doi:10.1016/S0893-6080(01) 00111-3
Papik, K., Molnar, B., Schaefer, R., Dombovari, Z., Tulassay, Z., Feher, J.: Application of neural networks in medicine-a review. Diagn Med Tech 4, 538–556 (1998)
Reggia, J.A.: Neural computation in medicine. Artif. Intell. Med 5, 143–157 (1993). doi:10.1016/0933-3657(93) 90014-T
Selvi, S.T., Arumugam, S., Ganesan, L.: BIONET: An artificial neural network model for diagnosis of diseases. Pattern Recognit. Lett 21, 721–740 (2001). doi:10.1016/S0167-8655(00) 00027-1
Tomida, S., Hanai, T., Koma, N., Suzuki, Y., Kobayashi, T., Honda, H.: Artificial neural network predictive model for allergic disease using neural network nucleotide polymorphisms data. J. Biosci. Bioeng 93(5), 470–478 (2002)
Zhang, G.P., Berardi, V.L.: An investigation of neural networks in thyroid function diagnosis. Health Care Manage. Sci 1, 29–37 (1998). doi:10.1023/A:1019078131698
Itchhaaporia, D., Snow, P.B., Almassy, R.J., Oetgen, W.J.: Artificial neural networks: current status in cardiovascular medicine. J. Am. Coll. Cardiol 28(2), 515–521 (1996). doi:10.1016/0735-1097(96) 00174-X
Abe, H., Ashizawa, K., Li, F., Matsuyama, N., Fukushima, A., Shiraishi, J., Macmahon, H., Dio, K.: Artificial neural networks for differential diagnosis of interstitial lung disease: results of a simulation test with actual clinical cases. Acad. Radiol 11, 29–37 (2004). doi:10.1016/S1076-6332(03) 00572-5
Walczak, S., Nowack, W.J.: An artificial neural network to diagnosing epilepsy using lateralized burst of theta EEGs. J. Med. Syst 25(1), 9–20 (2001). doi:10.1023/A:1005680114755
Guler, I., Ubeyli, E.D.: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 48(2), 113–121 (2005). doi:10.1016/j.jneumeth.2005.04.013
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aslan, K., Bozdemir, H., Sahin, C. et al. Can Neural Network Able to Estimate the Prognosis of Epilepsy Patients Accorrding to Risk Factors?. J Med Syst 34, 541–550 (2010). https://doi.org/10.1007/s10916-009-9267-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10916-009-9267-8