Skip to main content

Advertisement

Log in

Can Neural Network Able to Estimate the Prognosis of Epilepsy Patients Accorrding to Risk Factors?

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the underlying etiologic factors of epilepsy patients and to predict the prognosis of these patients by using a Multi-Layer Perceptron Neural Network (MLPNN) according to risk factors. 758 patients with epilepsy diagnosis are included in this study. The MLPNNs were trained by the parameters of demographic properties of the patients and risk factors of the disease. The results show that the most crucial risk factor of the epilepsy patients was constituted by the febrile convulsion (21.9%), the kinship of parents (22.3%), the history of epileptic relatives (21.6%) and the history of head injury (18.6%). We had 91.1 % correct prediction rate for detection of the prognosis by using the MLPNN algorithm. The results indicate that the correct prediction rate of prognosis of the MLPNN model for epilepsy diseases is found satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Melcon, M.O., Kochen, S.: Prognosis of epilepsy in a community-based study: 8 years of follow-up in an Argentine community. Acta. Neurol. Scand 112, 370–374 (2005). doi:10.1111/j.1600-0404.2005.00519.x

    Article  Google Scholar 

  2. Sander, J.W.: Some aspects of prognosis in the epilepsies: a review. Epilepsia 34(6), 1007–1016 (1993). doi:10.1111/j.1528-1157.1993.tb02126.x

    Article  Google Scholar 

  3. Macdonald, B.: The prognosis of epilepsy. Seizure 10, 347–358 (2001). doi:10.1053/seiz.2000.0523

    Article  Google Scholar 

  4. Arts, W.F.M., Brouwer, O.F., Peters, A.C.B., Stroink, H., Peeters, E.A.J., Schmitz, P.I.M., Donselaar, C.A., Greets, A.T.: Course and prognosis of childhood epilepsy: 5 years follow-up of the Dutch study of epilepsy in childhood. Brain 127, 1774–1784 (2004). doi:10.1093/brain/awh200

    Article  Google Scholar 

  5. Guo, X., et al.: Distinct serumal proteomic patterns between ascending and descending types of loco-regionally advanced nasopharyngeal carcinoma assed by surface enhanced laser desorption ionization and artificial neural network. Chin. Med. J 118(22), 1912–1917 (2005)

    Google Scholar 

  6. Jerez-Aragones, J.M., Gomez-Ruiz, J.A., Ramos-Jimenez, A., Munoz-Pereza, J., Alba-Conejo, E.: Combined neural network and decision trees model for prognosis of breast cancer relapse. Artif. Intell. Med 27, 45–63 (2003). doi:10.1016/S0933-3657(02)00086-6

    Article  Google Scholar 

  7. Lisboa, P.J., Taktak, A.F.G.: The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19(4), 408–415 (2006). doi:10.1016/j.neunet.2005.10.007

    Article  MATH  Google Scholar 

  8. Mian, S., et al.: Ser um proteomic fingerprinting discriminates between clinical stages and predicts disease progression in melanoma patients. J. Clin. Oncol 23(22), 5088–5093 (2005). doi:10.1200/JCO.2005.03.164

    Article  Google Scholar 

  9. Modular Neural Networks for Medical Prognosis: Quantifying the Bene® ts of combining neural networks for survival prediction. Connect. Sci 9(1), 71–86 (1997). doi:10.1080/095400997116748

    Article  Google Scholar 

  10. O'Neill, M.C., Song, L.: Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect. BMC Bioinformatics 4, 13 (2003). doi:10.1186/1471-2105-4-13

    Article  Google Scholar 

  11. Ortiz, J.J., Ghefter, C.G., Silva, C.E., Sabbatini, R.M.: One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data. JACC 26(7)), 1586–1593 (1995)

    Google Scholar 

  12. Raj, E.B.: ‘Neural network’ algorithm to predict severity in epidermolysis bullosa simplex. Indian J. Dermatol. Venereol. Leprol 71(2), 106–108 (2005)

    Article  Google Scholar 

  13. Tandon, R., Adak, S., Kaye, J.A.: Neural networks for longitudinal studies in Alzheimer’s disease. Artif. Intell. Med 36, 245–255 (2006). doi:10.1016/j.artmed.2005.10.007

    Article  Google Scholar 

  14. Haykin, S.: Neural networks: A comprehensive foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  15. Krose, B., Smaget, P.V.D.: An Introduction to Neural Networks. The University of Amsterdam, (Amsterdam (1996)

    Google Scholar 

  16. The newsgroup for people who want to use or explore the capabilities of Artificial Neural Networks or Neural-Network-like structures. (SAS Institute Inc. 2002), (Accessed April 24, 2007 at ftp://ftp.sas.com/pub/neural/FAQ2.htm).

  17. Subasi, A.: Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl 31, 320–328 (2006). doi:10.1016/j.eswa.2005.09.027

    Article  Google Scholar 

  18. Alkan, A., Koklukaya, E., Subasi, A.: Automatic seizure detection in EEG using logistic regression and artificial neural network. J Neurosci Methods 148, 167–176 (2005)

    Article  Google Scholar 

  19. Subasi, A., Erçelebi, E.: Classification of EEG signals using neural network and logistic regression. Comput. Methods Programs Biomed 78(2), 87–99 (2005). doi:10.1016/j.cmpb.2004.10.009

    Article  Google Scholar 

  20. Kiymik, M.K., Subasi, A., Ozcalik, H.R.: Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J. Med. Syst 28(6), 511–523 (2004). doi:10.1023/B:JOMS.0000044954.85566.a9

    Article  Google Scholar 

  21. Aslan, K., Bozdemir, H., Sahin, C., Ogulata, S.N., Erol, R.: A radial basis function neural network model for classification of epilepsy using EEG signals. J. Med. Syst 32(5), 403–408 (2008). doi:10.1007/s10916-008-9145-9

    Article  Google Scholar 

  22. Sahin, C., Ogulata, S.N., Aslan, K., Bozdemir, H., Erol, R.: A neural network-based classification model for partial Epilepsy by EEG signals. Int. J. Pattern Recognit. Artif. Intell 22(5), 973–985 (2008). doi:10.1142/S0218001408006594

    Article  Google Scholar 

  23. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, (New York (2000)

    Google Scholar 

  24. Bernand, E.: Optimization training neural nets. IEEE Trans. Neural Networks 3(2), 989–993 (1992)

    Google Scholar 

  25. Fontenla-Romero, O., Erdogmus, D., Principe, J. P., Alonso-Betanzos, A., Castillo, E., Accelerating the converge speed of neural networks learning methods using least squares. European Symposium on Artificial Neural Networks 255-260, 2003.

  26. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw 5(6), 989–993 (1994). doi:10.1109/72.329697

    Article  Google Scholar 

  27. Wilamowki, B. M., Iqlikci, S., Kaynak, O., Onder, E. M., An algorithm for fast converges in training neural networks, IEEE Proceedings of International Joint Conference on Neural Networks 1778-1782, 2005.

  28. Lera, G., Pinzolas, M.: A quasi-local Levenberg-Marquardt algorithm for neural network training. IEEE World Congress on Computational Intelligence 3, 2242–2246 (1998)

    Google Scholar 

  29. Manolis, I.A.L., Antonis, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? IEEE Proceedings of International Conference on Computer Vision 2, 1526–1531 (2005)

    Google Scholar 

  30. Neurosolutions for Excel: Neurodimension Inc. (Accessed January 11, 2007 at www.nd.com/download.), 2006.

  31. Wheless, J.M., Kim, H.L.: Adolescent seizures and epilepsy syndromes. Epilepsia 43(s3), 33–52 (2002). doi:10.1046/j.1528-1157.43.s.3.12.x

    Article  Google Scholar 

  32. Elwes, R.D.C., Chesterman, P., Reynold, E.H.: Prognosis after a first untreated tonic-clonic seizures. Lancet 2, 752–753 (1985). doi:10.1016/S0140-6736(85) 90631-2

    Article  Google Scholar 

  33. Salvatore, G., Daniela, G., Vezzosi, P., Farnetani, M., Bartolo, R.M.D., Bazzotti, S., Morgese, G., Balestri, P.: Childhood absence epilepsy: evolution and prognostic factors. Epilepsia. 46(11), 1796–1801 (2005). doi:10.1111/j.1528-1167.2005.00277.x

    Article  Google Scholar 

  34. Sander, J.W., Kwan, P.: The natural history of epilepsy: an epidemiological view. J. Neurol. Neurosurg. Psychiatry. 75, 1376–1381 (2004). doi:10.1136/jnnp. 2003.029223

    Article  Google Scholar 

  35. Bittencourt, P.R.M., Adamolekum, B., Bharucha, N., Caprio, A., Cossio, O.H., Danesi, M.A., Dumas, M., Meinardi, H., Ordinario, A., Senanayake, N., Shakir, R., Sotelo, J.: Epilepsy in the topics: i. epidemiological, socioeconomic risk factors, and etiology. Epilepsia 37(11)), 1121–1127 (1996). doi:10.1111/j.1528-1157.1996.tb01035.x

    Article  Google Scholar 

  36. Kotsopoulos, I., Krom, M., Kessels, F., Lodder, J., Troost, J., Twellaar, M., Merode, T., Knottnerus, A.: Incidence of epilepsy and predictive factors of epileptic and non-epileptic seizures. Seizure. 14, 175–182 (2005). doi:10.1016/j.seizure.2005.01.005

    Article  Google Scholar 

  37. Elwes, R.D.C., Johnson, A.L., Reynolds, E.H.: The course of untreated Epilepsy. BMJ 297, 641–644 (1988)

    Article  Google Scholar 

  38. Mohanraj, R., Brodie, M.J.: Outcome in newly diagnosed localization-related epilepsies. Seiuzure 14, 318–323 (2005). doi:10.1016/j.seizure.2005.04.002

    Article  Google Scholar 

  39. Gruraj, A.K., Sztriha, L., Bener, A., Dawodu, A., Eapen, V.: Epilepsy in children with cerebral palsy. Seizure 12, 110–114 (2003). doi:10.1016/S1059131102002558

    Article  Google Scholar 

  40. Engelsen, B.A., Gronning, M.: Epileptic patients with multiple sclerosis. Is the prognosis of epilepsy underestimated? Seizure 6, 377–382 (1997). doi:10.1016/S1059-1311(97)80037-4

    Article  Google Scholar 

  41. Trouillas, P., Courjon, J.: Epilepsy with multiple sclerosis. Epilepsia. 13, 325–333 (1972). doi:10.1111/j.1528-1157.1972.tb05267.x

    Article  Google Scholar 

  42. Murthy, J.M.K., Yangala, R.: Acute symptomatic seizures-incidence and etiological spectrum: a hospital—based study from South India. Seizure 8, 162–165 (1999). doi:10.1053/seiz.1998.0251

    Article  Google Scholar 

  43. Murthy, J.M.K., Yangala, R.: Etiological spectrum of symtomatic localization related epilepsies: a study from South India. J Neurol. Scien 158, 65–70 (1998)

    Article  Google Scholar 

  44. Forsgren, L., Heijbel, J., Nystrom, L., Sidenvall, R.: A follow-up of an incident case- referent study of febrile convulsions seven years after the onset. Seizure 6, 21–26 (1997). doi:10.1016/S1059-1311(97) 80048-9

    Article  Google Scholar 

  45. Shinnar, S., Pellock, J.M., Berg, A.N., O’Dell, C., Driscoll, S.M., Maytal, J., Moshe, S.L., DeLorenzo, R.J.: Short-Term Outcomes of Children with Febrile Status Epilepticus. Epilepsia 42(1), 47–53 (2001). doi:10.1046/j.1528-1157.2001.10000.x

    Article  Google Scholar 

  46. Paolucci, S., Silvestri, G., Lubich, S., Pratesi, L., Traballesi, M., Gigli, G.L.: Poststroke Late Seizures and Their Role in Rehabilation of Patients. Epilepsia 38(3), 266–270 (1997). doi:10.1111/j.1528-1157.1997.tb01115.x

    Article  Google Scholar 

  47. Briellmann, R.S., Broers, Y.T., Berkovic, S.F.: Idiopathic Generalized Epilepsies: Do Sporadic and Familial Cases Differ? Epilepsia 42(11), 1399–1402 (2004). doi:10.1046/j.1528-1157.2001.03201.x

    Article  Google Scholar 

  48. Winawer, M.R., Shinnar, S.: Genetic epidemiology of epilepsy or what do we tell families? Epilepsia 46((s10), 24–30 (2005). doi:10.1111/j.1528-1167.2005.00354.x

    Article  Google Scholar 

  49. Singh, R., Scheffer, I.E., Crossland, K., Berkovic, S.F.: Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann. Neurol 45, 75–81 (1999). 10.1002/1531-8249(199901)45:1 < 75::AID-ART13 > 3.0.CO;2-W

    Article  Google Scholar 

  50. Dybowski, R., Neural computation in medicine: perspectives and prospects. In: Malmgren, H., Borga, M., Niklasson, L., (Ed.) Proceedings of the ANNIMAB-1 Conference (Artificial Neural Networks in Medicine and Biology), (Springer- Verlag; Goteborg 26-36, 2000.

  51. Lisboa, P.J.: A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw 15(1), 11–39 (2002). doi:10.1016/S0893-6080(01) 00111-3

    Article  Google Scholar 

  52. Papik, K., Molnar, B., Schaefer, R., Dombovari, Z., Tulassay, Z., Feher, J.: Application of neural networks in medicine-a review. Diagn Med Tech 4, 538–556 (1998)

    Google Scholar 

  53. Reggia, J.A.: Neural computation in medicine. Artif. Intell. Med 5, 143–157 (1993). doi:10.1016/0933-3657(93) 90014-T

    Article  Google Scholar 

  54. Selvi, S.T., Arumugam, S., Ganesan, L.: BIONET: An artificial neural network model for diagnosis of diseases. Pattern Recognit. Lett 21, 721–740 (2001). doi:10.1016/S0167-8655(00) 00027-1

    Article  Google Scholar 

  55. Tomida, S., Hanai, T., Koma, N., Suzuki, Y., Kobayashi, T., Honda, H.: Artificial neural network predictive model for allergic disease using neural network nucleotide polymorphisms data. J. Biosci. Bioeng 93(5), 470–478 (2002)

    Google Scholar 

  56. Zhang, G.P., Berardi, V.L.: An investigation of neural networks in thyroid function diagnosis. Health Care Manage. Sci 1, 29–37 (1998). doi:10.1023/A:1019078131698

    Article  Google Scholar 

  57. Itchhaaporia, D., Snow, P.B., Almassy, R.J., Oetgen, W.J.: Artificial neural networks: current status in cardiovascular medicine. J. Am. Coll. Cardiol 28(2), 515–521 (1996). doi:10.1016/0735-1097(96) 00174-X

    Article  Google Scholar 

  58. Abe, H., Ashizawa, K., Li, F., Matsuyama, N., Fukushima, A., Shiraishi, J., Macmahon, H., Dio, K.: Artificial neural networks for differential diagnosis of interstitial lung disease: results of a simulation test with actual clinical cases. Acad. Radiol 11, 29–37 (2004). doi:10.1016/S1076-6332(03) 00572-5

    Article  Google Scholar 

  59. Walczak, S., Nowack, W.J.: An artificial neural network to diagnosing epilepsy using lateralized burst of theta EEGs. J. Med. Syst 25(1), 9–20 (2001). doi:10.1023/A:1005680114755

    Article  Google Scholar 

  60. Guler, I., Ubeyli, E.D.: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 48(2), 113–121 (2005). doi:10.1016/j.jneumeth.2005.04.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezban Aslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, K., Bozdemir, H., Sahin, C. et al. Can Neural Network Able to Estimate the Prognosis of Epilepsy Patients Accorrding to Risk Factors?. J Med Syst 34, 541–550 (2010). https://doi.org/10.1007/s10916-009-9267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9267-8

Keywords

Navigation