Skip to main content

Advertisement

Log in

Recurrent Neural Networks for Diagnosis of Carpal Tunnel Syndrome Using Electrophysiologic Findings

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper presents the use of recurrent neural networks (RNNs) for diagnosis of carpal tunnel syndrome (CTS) (normal, right CTS, left CTS, bilateral CTS). The RNN is trained with the Levenberg-Marquardt algorithm. The RNN is trained on the features of CTS (right median motor latency, left median motor latency, right median sensory latency, left median sensory latency). The multilayer perceptron neural network (MLPNN) is also implemented for comparison the performance of the classifiers on the same diagnosis problem. The total classification accuracy of the RNN is significantly high (94.80%). The obtained results confirmed the validity of the RNNs to help in clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bland, J. D., Carpal tunnel syndrome. BMJ. 335:343–346, 2007. doi:10.1136/bmj.39282.623553.AD.

    Article  Google Scholar 

  2. Aroori, S., and Spence, R. A., Carpal tunnel syndrome. Ulster Med. J. 77:6–17, 2008.

    Google Scholar 

  3. Preston, D. C., and Shapiro, B. E., Electromyography and neuromuscular disorders. Elsevier Science, Philadelphia, pp. 255–281, 2005.

    Google Scholar 

  4. Haykin, S., Neural networks: A Comprehensive Foundation. Macmillan, New York, 1994.

    MATH  Google Scholar 

  5. Basheer, I. A., and Hajmeer, M., Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods. 43 (1)3–31, 2000. doi:10.1016/S0167-7012(00)00201-3.

    Article  Google Scholar 

  6. Chaudhuri, B. B., and Bhattacharya, U., Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing. 34:11–27, 2000. doi:10.1016/S0925-2312(00)00305-2.

    Article  MATH  Google Scholar 

  7. Miller, A. S., Blott, B. H., and Hames, T. K., Review of neural network applications in medical imaging and signal processing. Med. Biol. Eng. Comput. 30:449–464, 1992. doi:10.1007/BF02457822.

    Article  Google Scholar 

  8. Mobley, B. A., Schechter, E., Moore, W. E., McKee, P. A., and Eichner, J. E., Predictions of coronary artery stenosis by artificial neural network. Artif. Intell. Med. 18:187–203, 2000. doi:10.1016/S0933-3657(99)00040-8.

    Article  Google Scholar 

  9. Übeyli, E. D., Comparison of different classification algorithms in clinical decision-making. Expert Syst. 24 (1)17–31, 2007. doi:10.1111/j.1468-0394.2007.00418.x.

    Article  Google Scholar 

  10. Übeyli, E. D., Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput. Biol. Med. 38 (1)14–22, 2008. doi:10.1016/j.compbiomed.2007.07.004.

    Article  Google Scholar 

  11. Übeyli, E. D., Combining neural network models for automated diagnostic systems. J. Med. Syst. 30 (6)483–488, 2006. doi:10.1007/s10916-006-9034-z.

    Article  Google Scholar 

  12. Übeyli, E. D., A mixture of experts network structure for breast cancer diagnosis. J. Med. Syst. 29 (5)569–579, 2005. doi:10.1007/s10916-005-6112-6.

    Article  Google Scholar 

  13. Übeyli, E. D., Multiclass support vector machines for diagnosis of erythemato-squamous diseases. Expert Syst. Appl. 35 (4)1733–1740, 2008. doi:10.1016/j.eswa.2007.08.067.

    Article  Google Scholar 

  14. Übeyli, E. D., Modified mixture of experts for diabetes diagnosis. J. Med. Syst. 2009 (in press).

  15. Übeyli, E. D., Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. J. Med. Syst. 2009 (in press)

  16. Übeyli, E. D., and Doğdu, E., Automatic detection of erythemato-squamous diseases using k-means clustering. J. Med. Syst. 2009 (in press)

  17. Übeyli, E. D., İlbay, K., İlbay, G., Sahin, D., and Akansel, G., Differentiation of two subtypes of adult hydrocephalus by mixture of experts. J. Med. Syst. 2009 (in press).

  18. Elman, J. L., Finding structure in time. Cogn. Sci. 14 (2)179–211, 1990.

    Article  Google Scholar 

  19. Übeyli, E. D., Recurrent neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals. Expert Syst. Appl. 34 (4)2538–2544, 2008. doi:10.1016/j.eswa.2007.04.002.

    Article  Google Scholar 

  20. Übeyli, E. D., Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients. Comput. Biol. Med. 38 (3)401–410, 2008. doi:10.1016/j.compbiomed.2008.01.002.

    Article  Google Scholar 

  21. Übeyli, E. D., Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks. Digit. Signal Process. 19 (1)134–143, 2009. doi:10.1016/j.dsp.2008.07.007.

    Article  Google Scholar 

  22. Übeyli, E. D., Combining recurrent neural networks with eigenvector methods for classification of ECG beats. Digit. Signal Process. 19 (2)320–329, 2009. doi:10.1016/j.dsp.2008.09.002.

    Article  Google Scholar 

  23. Übeyli, E. D., and Übeyli, M., Case studies for applications of Elman Recurrent Neural Networks, Recurrent Neural Networks, I-Tech Education and Publishing, Editors: Xiaolin Hu, P. Balasubramaniam, ISBN 978-953-7619-08-4, Chapter 17, pp. 357–376, 2008.

  24. Budak, F., Yenigun, N., Ozbek, A., et al., Carpal tunnel syndrome in carpet weavers. Electromyogr. Clin. Neurophysiol. 41:29–32, 2001.

    Google Scholar 

  25. Pineda, F. J., Generalization of back-propagation to recurrent neural networks. Phys. Rev. Lett. 59 (19)2229–2232, 1987. doi:10.1103/PhysRevLett.59.2229.

    Article  MathSciNet  Google Scholar 

  26. Battiti, R., First- and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput. 4:141–166, 1992. doi:10.1162/neco.1992.4.2.141.

    Article  Google Scholar 

  27. Hagan, M. T., and Menhaj, M. B., Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5 (6)989–993, 1994. doi:10.1109/72.329697.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Derya Übeyli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilbay, K., Übeyli, E.D., Ilbay, G. et al. Recurrent Neural Networks for Diagnosis of Carpal Tunnel Syndrome Using Electrophysiologic Findings. J Med Syst 34, 643–650 (2010). https://doi.org/10.1007/s10916-009-9277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9277-6

Keywords

Navigation