Abstract
The electromyography (EMG) signals give information about different features of muscle function. Real-time measurements of EMG have been used to observe the dissociation between the electrical and mechanical measures that occurs with fatigue. The purpose of this study was to detect fatigue of biceps brachia muscle using time–frequency methods and independent component analysis (ICA). In order to realize this aim, EMG activity obtained from activated muscle during a phasic voluntary movement was recorded for 14 healthy young persons and EMG signals were observed in time–frequency domain for determination of fatigue. Time–frequency methods are used for the processing of signals that are non-stationary and time varying. The EMG contains transient signals related to muscle activity. The proposed method for the detection of muscle fatigue is automated by using artificial neural networks (ANN). The results show that ANN with ICA separates EMG signals from fresh and fatigued muscles, hence providing a visualization of the onset of fatigue over time. The system is adaptable to different subjects and conditions since the techniques used are not subject or workload regime specific.


Similar content being viewed by others
References
Mathiassen, S. E., The influence of exercise/rest schedule on the physiological and psychophysical response to isometric shoulder–neck exercise. Eur. J. Appl. Physiol. 67:528–539, 1993. doi:10.1007/BF00241650.
Barnahart, S., Demers, P. A., Miller, M., Longstreth, W. T., and Rosenstock, L., Carpal tunnel syndrome among ski manufacturing workers. Scand. J. Work Environ. Health. 17:46–52, 1991.
Nussbaum, M., Clarc, L. L., Lanza, M. A., and Rice, K. M., Fatigue and endurance limits during intermittent overhead work. Am. Ind. Hyg. Assoc. J. 62:446–456, 2001. doi:10.1202/0002-8894(2001)062<0446:FAELDI>2.0.CO;2.
Roman-Liu, D., Tokarski, T., and Wojcik, K., Quantitative assessment of upper limb muscle fatigue depending on the conditions of repetitive task load.. J. Electromyogr. Kinesiol. 14:671–682, 2004. doi:10.1016/j.jelekin.2004.04.002.
Moshou, D., Hostens, I., Papaioannou, G., and Ramon, H., Dynamic muscle fatigue detection using self-organizing maps.. Appl. Soft Comput. 5:391–398, 2005. doi:10.1016/j.asoc.2004.09.001.
Xie, H., and Wang, Z., Mean frequency derived via Hilbert–Huang transform with application to fatigue EMG signal analysis. Comput. Methods Programs Biomed. 8 (2)114–120, 2006. doi:10.1016/j.cmpb.2006.02.009.
Hedayatpour, N., Arendt-Nielsen, L., and Farina, D., Non-uniform electromyographic activity during fatigue and recovery of the vastus medialis and lateralis muscles.. J. Electromyogr. Kinesiol. 18 (3)390–396, 2008. doi:10.1016/j.jelekin.2006.12.004.
Beck, T. W., Housh, T. J., Johnson, G. O., Weir, J. P., Cramer, J. T., Coburn, J. W., and Malek, M. H., Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii.. J. Electromyogr. Kinesiol. 15:190–199, 2005. doi:10.1016/j.jelekin.2004.08.007.
Hostens, I., Seghers, J., Spaepen, A., and Ramon, H., Validation of the wavelet spectral estimation technique in Biceps Brachii and Brachioradialis fatigue assessment during prolonged low-level static and dynamic contractions. J. Electromyogr. Kinesiol. 14:205–215, 2004. doi:10.1016/S1050-6411(03)00101-9.
Kumar, D. K., Pah, N. D., and Bradley, A., Wavelet Analysis of Surface Electromyography to Determine Muscle Fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 11 (4)400–406, 2003. doi:10.1109/TNSRE.2003.819901.
Linssen, W. H. J. P., Stegeman, D. F., Joosten, E. M. G., van horst, M. A., Binkhorst, R. A., and Notermans, S. L. H., Variability and interrelationship of surface EMG parameters during local muscle fatigue. Muscle Nerve. 16 (8)849–856, 1993. doi:10.1002/mus.880160808.
Karlsson, S., Yu, J., and Akay, M., Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods.. IEEE Trans. Biomed. Eng. 46:670–684, 1999. doi:10.1109/10.764944.
Akay, M., Introduction: wavelets in biomedical engineering. Ann. Biomed. Eng. 23:531–542, 1995. doi:10.1007/BF02584453.
Cohen, L., Time–frequency distributions: a review. Proc. IEEE. 77:941–981, 1989. doi:10.1109/5.30749.
Marchant, B. P., Time–frequency analysis for biosystem engineering. Biosystems Eng. 85 (3)261–281, 2003. doi:10.1016/S1537-5110(03)00063-1.
Semmlow, J. L., Biosignal and biomedical image processing, MATLAB-based applications. Marcel Dekker, New York, 2004.
Boudreaux-Bartels, G. F., and Murry, R., Time–frequency signal representations for biomedical signals. In: Bronzino, J. (Ed.), The biomedical engineering handbookCRC, Boca Raton, 1995.
Neto, E. P. S., Custaud, M. A., Frutoso, J., Somody, L., Gharib, C., and Fortrat, J. O., Smoothed pseudo Wigner–Ville distribution as an alternative to Fourier transform in rats.. Auton. Neurosci. Basic Clin. 87:258–267, 2001. doi:10.1016/S1566-0702(00)00211-3.
Narasimhan, S. V., and Nayak, M. B., Improved Wigner–Ville distribution performance by signal decomposition and modified group delay. Signal Processing. 83:2523–2538, 2003. doi:10.1016/j.sigpro.2003.07.011.
Drai, R., Khelil, M., and Benchaala, A., Time frequency and wavelet transform applied to selected problems in ultrasonics. NDE. NDT Int. 35:567–572, 2002. doi:10.1016/S0963-8695(02)00041-5.
Rioul, O., Vetterli, M., Wavelets and signal processing., IEEE SP Magazine, 14–38. 1991.
Makeig, S., and Inlow, M., Lapses in alertness: coherence of fluctuations in performance and EEG spectrum. Electroencephalogr. Clin. Neurophysiol. 86:23–35, 1993. doi:10.1016/0013-4694(93)90064-3.
Lee, T. W., Girolami, M., and Sejnowski, T. J., Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput. 11:606–633, 1999. doi:10.1162/089976699300016719.
Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10:626–634, 1999. doi:10.1109/72.761722.
Hyvarinen, A., and Oja, E., Independent component analysis: algorithms and applications. Neural Netw. 13 (4–5)411–430, 2000. doi:10.1016/S0893-6080(00)00026-5.
The FastICA MATLAB Package: Available from http://www.cis.hut.fi/projects/ica/fastica.
Widodo, A., and Yang, B. S., Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 33:241–250, 2007. doi:10.1016/j.eswa.2006.04.020.
Widodo, A., Yang, B. S., and Han, T., Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Syst. Appl. 32:299–312, 2007. doi:10.1016/j.eswa.2005.11.031.
Haykin, S., Neural networks: a comprehensive foundation. Macmillan, New York, 1994.
Basheer, I. A., and Hajmeer, M., Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods. 43:3–31, 2000. doi:10.1016/S0167-7012(00)00201-3.
Chaudhuri, B. B., and Bhattacharya, U., Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing. 34:11–27, 2000. doi:10.1016/S0925-2312(00)00305-2.
Hagan, M. T., and Menhaj, M. B., Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5 (6)989–993, 1994. doi:10.1109/72.329697.
Subasi, A., and Ercelebi, E., Classification of EEG signals using neural network and logistic regression. Comput. Methods Programs Biomed. 78 (2)87–99, 2005. doi:10.1016/j.cmpb.2004.10.009.
Karlsson, J. S., Gerdle, B., and Akay, M., Analyzing surface myoelectric signals recorded during isokinetic contractions. IEEE Eng. Med. Biol. 20:97–105, 2001. doi:10.1109/51.982281.
Karlsson, S., Yu, J., and Akay, M., Time–frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans. Biomed. Eng. 47:228–238, 2000. doi:10.1109/10.821766.
Acknowledgement
This research has been supported by the Scientific & Technological Research Council of Turkey (TUBITAK Project no: 105E039).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Subasi, A., Kiymik, M.K. Muscle Fatigue Detection in EMG Using Time–Frequency Methods, ICA and Neural Networks. J Med Syst 34, 777–785 (2010). https://doi.org/10.1007/s10916-009-9292-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10916-009-9292-7