Skip to main content

Advertisement

Log in

An Approach to Identify Optic Disc in Human Retinal Images Using Ant Colony Optimization Method

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this work, an attempt has been made to identify optic disc in retinal images using digital image processing and optimization based edge detection algorithm. The edge detection was carried out using Ant Colony Optimization (ACO) technique with and without pre-processing and was correlated with morphological operations based method. The performance of the pre-processed ACO algorithm was analysed based on visual quality, computation time and its ability to preserve useful edges. The results demonstrate that the ACO method with pre-processing provides high visual quality output with better optic disc identification. Computation time taken for the process was also found to be less. This method preserves nearly 50% more edge pixel distribution when compared to morphological operations based method. In addition to improve optic disc identification, the proposed algorithm also distinctly differentiates between blood vessels and macula in the image. These studies appear to be clinically relevant because automated analyses of retinal images are important for ophthalmological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Constable, I., McCombe, M., Mitchell, P., O'Day, J., Phillips, P., Stocks, A., Taylor, H., and Welborn, T., Diabetes and the eye—professional guidelines. Australian Diabetes Society for Diabetes, Australia, 1996.

    Google Scholar 

  2. Boulnois, J. L., Photo physical processes in recent medical laser developments. Lasers Med. Sci. 1:47–66, 1986. doi:10.1007/BF02030737.

    Article  Google Scholar 

  3. Bohigian, G. M., Lasers in Medicine and Surgery. JAMA. 256:900–907, 1986. doi:10.1001/jama.256.7.909.

    Article  Google Scholar 

  4. Tamura, S., Okamoto, Y., and Yanashima, K., Zero-crossing interval correction in tracking eye-fundus blood vessels. Pattern Recognit. 21(3):227–233, 1988. doi:10.1016/0031-3203(88)90057-X.

    Article  Google Scholar 

  5. Tolias, Y., and Panas, S. A., Fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans. Med. Imaging. 17(2):263–273, 1998. doi:10.1109/42.700738.

    Article  Google Scholar 

  6. Akita, K., and Kuga, H. A., Computer method of understanding ocular fundus images. Pattern Recognit. 15(6):431–443, 1982. doi:10.1016/0031-3203(82)90022-X.

    Article  Google Scholar 

  7. Kaupp, A., Dolemeyer, A., Wilzeck, R., Schlosser, R., Wolf, S., Meyer-Ebrecht, D., Measuring morphological properties of the human retinal vessel system using a two-stage image processing approach. Proceedings of the IEEE International Conference on Image Processing. pp. 431–435, 1994.

  8. Goldbaum, M., Moezzi, S., Taylor, A., Chatterjee, S., Jeff, B., Edward, H., and Ramesh, J., Automated diagnosis and image understanding with object extraction, object classfication and inferencing in retinal images. Proc. IEEE Int. Conf. Image Process. 3:695–698, 1996. doi:10.1109/ICIP.1996.560760.

    Article  Google Scholar 

  9. Pinz, A., Bernogger, S., Datlinger, P., and Kruger, A., Mapping the human retina. IEEE Trans. Med. Imaging. 17(4):606–619, 1998. doi:10.1109/42.730405.

    Article  Google Scholar 

  10. Leandro, J., Cesar, R., Jelinek, H., Blood vessel segmentation in retina: Preliminary assessment of the mathematical morphology and of the wavelet transform techniques. Proceedings of XIV Brazilian Symposium on Computer Graphics and Image Processing. pp. 84–90, 2001.

  11. Chanwimaluang, T., Fan, G., An efficient algorithm for extraction of anatomical structures in retinal images. Proceedings of IEEE International Conference on Image Processing. Barcelona, Spain, pp. 1093–1096, 2003.

  12. Sinthanayothin, C., Boyce, J. F., Cook, H. L., and Williamson, T. H., Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83:902–910, 1999. doi:10.1136/bjo.83.8.902.

    Article  Google Scholar 

  13. Li, H., Chutatape, O., Automatic location of optic disk in retinal images. Proceedings of the International Conference on Image processing. Thessaloniki, Greece, pp. 837–840, October, 2001.

  14. Chaudhuri, S., Chatterjee, N.K., Goldbaum, M., Automatic detection of the optic nerve in retinal images. Proceedings of the IEEE International Conference on Image Processing. Singapore, pp. 1–5, 1989.

  15. Hoover, A., and Goldbaum, M., Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging. 22(8):951–958, 2003. doi:10.1109/TMI.2003.815900.

    Article  Google Scholar 

  16. Morris, T., Newell, Z., Segmentation of retinal images guided by the wavelet transform. Proceedings of the International Conference on Image and Signal Processing. Manchester, pp. 303–306, 1996.

  17. Goh, K. G., Hsu, W., Li Lee, M., and Ang. H., ADRIS: An automatic diabetic retinal image screening system. Medical Data Mining and Knowledge Discovery, vol. 60, Studies in Fuzziness and Soft Computing, Cios, K. J., Ed.: Physica-Verlag, pp. 181–210, 2001.

  18. Walter, T., Klein, J. C., Massin, P., and Erginay, A., A contribution of image processing to the diagnosis of diabetic retinopathy—Detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging. 21(10):1236–1243, 2002. doi:10.1109/TMI.2002.806290.

    Article  Google Scholar 

  19. Reza, A. W., Eswaran, C., and Hati, S., Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds. J. Med. Syst. 33:73–80, 2009. doi:10.1007/s10916-008-9166-4.

    Article  Google Scholar 

  20. Carmen, A., Luigi, D., Domenico, T., Automated detection of optic disc location in retinal images. Proceedings of the 21st IEEE International Symposium on Computer-Based Medical Systems. pp. 17–22, 2008

  21. Thanapong, C., Sarat, Y., Zhonghua, S., Supan, T., Supot, S., and Manas, S., Edge detection of the optic disc in retinal images based on identification of a round shape. International Symposium on Communications and Information Technologies. pp. 670–674, 2008.

  22. Tobin, K. W., Chaum, E., Priya Govindasamy, V., and Kamowski, T. P., Detection of anatomic structures in human retinal imagery. IEEE Trans. Med. Imaging. 26(12):1729–1739, 2007. doi:10.1109/TMI.2007.902801.

    Article  Google Scholar 

  23. Peng, H., Huizhi, C., and Shuqian, L., An artificial ant colonies approach to medical image segmentation. Comput. Methods Programs Biomed. 92(3):267–273, 2008. doi:10.1016/j.cmpb.2008.06.012.

    Article  Google Scholar 

  24. Malisia, A. R., Tizhoosh, H. R., Image thresholding using ant colony optimization”, in the Proceedings of the Canadian conference on computer and robot vision, Quebec, Canada, June 2006, pp. 26

  25. Dorigo, M., Birattari, M., and Stutzle, T., Ant colony optimization. IEEE Comput. Intell. Mag. 1:28–39, 2006.

    Google Scholar 

  26. Jing, T., Weiyu, Y., Shengli, X., Ant colony optimization algorithm for image edge detection. IEEE Congress on Evolutionary Computation. pp. 751–756, 2008.

  27. Hasio, Y. T., Chuang, C. L., Lu, Y. L., and Jiang, J. A., Robust multiple objects tracking using image segmentation and trajectory estimation scheme in video frames. Image and Vision Computing. 24(10):1123–1136, 2006.

    Article  Google Scholar 

  28. Hsiao, Y. T., Chuang, C. L., Yen, S. H., Lin, H. J., A mathematical morphological approach to thin edge detection in dark region. Proceedings of the 4th IEEE International Symposium on Signal Processing and Information Technology. pp. 310–313, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaminathan Ramakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavitha, G., Ramakrishnan, S. An Approach to Identify Optic Disc in Human Retinal Images Using Ant Colony Optimization Method. J Med Syst 34, 809–813 (2010). https://doi.org/10.1007/s10916-009-9295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9295-4

Keywords

Navigation