Skip to main content

Advertisement

Log in

Unsupervised Fuzzy Based Vessel Segmentation In Pathological Digital Fundus Images

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Performing the segmentation of vasculature in the retinal images having pathology is a challenging problem. This paper presents a novel approach for automated segmentation of the vasculature in retinal images. The approach uses the intensity information from red and green channels of the same retinal image to correct non-uniform illumination in color fundus images. Matched filtering is utilized to enhance the contrast of blood vessels against the background. The enhanced blood vessels are then segmented by employing spatially weighted fuzzy c-means clustering based thresholding which can well maintain the spatial structure of the vascular tree segments. The proposed method’s performance is evaluated on publicly available DRIVE and STARE databases of manually labeled images. On the DRIVE and STARE databases, it achieves an area under the receiver operating characteristic curve of 0.9518 and 0.9602 respectively, being superior to those presented by state-of-the-art unsupervised approaches and comparable to those obtained with the supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.parl.clemson.edu/stare/probing/

  2. http://www.retina.iv.fapesp.br

References

  1. Kanski, J. J., Clinical Ophthalmology: A systematic approach. Butterworth-Heinemann, London, 1989.

    Google Scholar 

  2. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M., Detection of blood vessels in retinal images using twodimensional matched filters. IEEE Trans. Med. Imaging 8, 1989 doi: 10.1109/42.34715

  3. Ricci, E., and Perfetti, R., Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Trans. Med. Imaging. 26:1357–1365, 2007. doi:10.1109/TMI.2007.898551

    Article  Google Scholar 

  4. Soares, J. V. B., Leandro, J. J. G., Cesar, R. M. Jr., Jelinek, H. F., and Cree, M. J., Retinal Vessel Segmentation Using the 2-D Gabor Wavelet and Supervised Classification. IEEE Transactions on Medical imaging I. 25:1214–1222, 2006.

    Article  Google Scholar 

  5. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging, 501–509 2004. doi: 10.1109/TMI.2004.825627

  6. Sofka, M., and Stewar, C. V., “Retinal vessel extraction using multiscale matched filters confidence and edge measures,” Tech. Rep. 05–20, the Department of Computer Science, Rensselaer Polytechnic Institute, August 16 2005.

  7. Mendonca, A. M., and Campilho, A., Segmentation of retinal blood vessels by combining the detection of centrelines and morphological reconstruction. IEEE Trans. Med. Imaging. 25(9):200–1213, 2006. doi:10.1109/TMI.2006.879955

    Article  Google Scholar 

  8. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical imaging, 19:3, 2000. http://www.ces.clemson.edu/ahoover

    Google Scholar 

  9. Jiang, X., Mojon, D., Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell., 131–137, 2003 doi:10.1109/TPAMI.2003.1159954

  10. Martinez-Perez, M. E., Hughes, A. D., Stanton, A. V., Thom, S. A., Chapman, N., Bharath, A. B., and Parker, K. H., Retinal vascular tree morphology: A semi-automatic quantification. IEEE Trans. Biomed. Eng. 49(8):912–917, 2002. doi:10.1109/TBME.2002.800789.

    Article  Google Scholar 

  11. Zana, F., Klein, J., Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process., 1010–1019, 2001 doi:10.1109/83.931095

  12. Fang, B., Hsu, W., Lee, M., “Reconstruction of vascular structures in retinal images,” in Proc. ICIP’03, 2003, pp. II:157–160.

  13. Thitiporn Chanwimaluang and Guoliang Fan, “An Efficient Blood Vessel Detection Algorithm for Retinal Images using Local Entropy Thresholding”, in Proc. of the IEEE International Symposium on Circuits and Systems”, Bangkok, Thailand, May 25–28, 2003.

  14. Salem, N. M., Nandi, A. K., Novel and adaptive contribution of the red channel in pre-processing of colour fundus images. J. Franklin Inst., 2006 doi:10.1016/j.jfranklin.2006.09.001

  15. Li, H., Hsu, W., Lee, M. L., and Wang, H., Automatic grading of retinal vessel calibre. IEEE Trans. Biomed. Eng. 52(7):1352–1355, 2005. doi:10.1109/TBME.2005.847402

    Article  Google Scholar 

  16. Can, A., Shen, H., Turner, J. N., et al., Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans. Inf. Technol. Biomed. 3(2):125–138, 1999. doi:10.1109/4233.767088

    Article  Google Scholar 

  17. Tolias, Y. A., and Panas, S. M., A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans. Med. Imaging. 17(2):263–273, 1998. doi:10.1109/42.700738

    Article  Google Scholar 

  18. Chutatape, O., Zheng, L., and Krishnan, S. M., Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters,. In Proc. of the 20th Annual International Conference of the IEEE Engineering inMedicine and Biology Society, (EMBS'98). 20:3144–3149, 1998.

    Google Scholar 

  19. Gao, X., Bharath, A., et al., “A method of vessel tracking for vessel diameter measurement on retinal images,” In ICIP01,pp.881–884, 2001.

  20. Zhou, L., Rzeszotarski, M. S., Singerman, L. J., and Chokreff, J. M., The detection and quantification of retinopathy using digital angiograms.. IEEE Trans. Med. Imaging. 13(4):619–626, 1994. doi:10.1109/42.363106

    Article  Google Scholar 

  21. Lalonde, M., Gagnon, L., Boucher, M.-C., “Non-recursive paired tracking for vessel extraction from retinal images,” Vision Interface, 61–68, 2000.

  22. Zhang, Y., Hsu, W., and Lee, M. L., Segmentation of Retinal Vessels Using Nonlinear Projections. Proc. ICIP. 5:541–544, 2007.

    Google Scholar 

  23. Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., and Abramoff, M., Comparative study of retinal vessel segmentation methods on a new publicly available database. In J. Michael Fitzpatrick and M. Sonka, editors, SPIE Medical Imaging, 5370:648–656. SPIE, 2004

  24. Yong, Y., Chongxun, Z., Pan, L., “A Novel Fuzzy C-Means Clustering Algorithm for Image Thresholding”, Measurement Science Review, 4, 1, 2004.

    Google Scholar 

  25. Gonzalez, R. C., Woods, R. E., and Eddins, S. L., Digital Image Processing Using Matlab.. Prentice Hall, Pearson, 2004.

    Google Scholar 

  26. Lam, B., and Yan, H., A Novel Vessel Segmentation Algorithm for Pathological Retina Images Based on the Divergence of Vector Fields. IEEE Trans. Med. Imaging. 27:237–246, 2008. doi:10.1109/TMI.2007.909827

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giri Babu Kande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kande, G.B., Subbaiah, P.V. & Savithri, T.S. Unsupervised Fuzzy Based Vessel Segmentation In Pathological Digital Fundus Images. J Med Syst 34, 849–858 (2010). https://doi.org/10.1007/s10916-009-9299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9299-0

Keywords

Navigation