Skip to main content

Advertisement

Log in

Classification of Sleep Apnea through Sub-band Energy of Abdominal Effort Signal Using Wavelets + Neural Networks

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Detection and classification of sleep apnea syndrome (SAS) is a critical problem. In this study an efficient method for classification sleep apnea through sub-band energy of abdominal effort using a particularly designed hybrid classifier as Wavelets + Neural Network is proposed. The Abdominal respiration signals were separated into spectral sub-band energy components with multi-resolution Discrete Wavelet Transform (DWT). The energy content of these spectral components was applied to the input of the artificial neural network (ANN). The ANN was configured to give three outputs dedicated to SAS cases; obstructive sleep apnea (OSA), central sleep apnea (CSA) and mixed sleep apnea (MSA). Through the network, satisfactory results that rewarding 85.62% mean accuracy in classifying SAS were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Young, T., Palta, M., Dempsey, J., et al., The occurrence of sleep disordered breathing among middle-aged adults. N. Engl. J. Med. 328:1230–1235, 1993.

    Article  Google Scholar 

  2. Guilleminault, C., van den Hoed, J., and Mitler, M., Clinical overview of the sleep apnea syndromes. In: (Ed.), Sleep Apnea SyndromesAlan R. Liss, New York, pp. 1–11, 1978.

    Google Scholar 

  3. American Academy of Sleep Medicine, Sleep related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep. 22:667–689, 1999.

    Google Scholar 

  4. Kryger, M. H., Management of obstructive sleep apnea–hypopnea syndrome: overview. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, pp. 940–954, 2000.

    Google Scholar 

  5. White, D. P., Central sleep apnea. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, p. 827, 2000.

    Google Scholar 

  6. Guilleminault, C., Partinen, M., Hollman, K., et al., Familial aggregates in obstructive sleep apnea syndrome. Chest. 107:1545–1551, 1995.

    Article  Google Scholar 

  7. Mathur, R., and Douglas, N. J., Family studies in patients with the sleep apnea–hypopnea syndrome. Ann. Intern. Med. 122:174–178, 1995.

    Google Scholar 

  8. Redline, S., Tishler, P. V., Tosteson, T. D., et al., The familial aggregation of obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 151:682–687, 1995.

    Google Scholar 

  9. Schwab, R. J., Pasirstein, M., Pierson, R., et al., Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am. J. Respir. Crit. Care Med. 168:522–530, 2003.

    Article  Google Scholar 

  10. Shintani, T., Asakura, K., and Kataura, A., Adenotonsillar hypertrophy and skeletal orphology of children with obstructive sleep apnea syndrome. Acta Otolaryngol. Suppl. 523:222–224, 1996.

    Google Scholar 

  11. Hamans, E. P., Van Marck, E. A., De Backer, W. A., et al., Morphometric analysis of the uvula in patients with sleep-related breathing disorders. Eur. Arch. Otorhinolaryngol. 257:232–236, 2000.

    Article  Google Scholar 

  12. Do, K. L., Ferreyra, H., Healy, J. F., and Davidson, T. M., Does tongue size differ between patients with and without sleep-disordered breathing? Laryngoscope. 110:1552–1555, 2000.

    Article  Google Scholar 

  13. Cakirer, B., Hans, M. G., Graham, G., et al., The relationship between craniofacial morphology and obstructive sleep apnea in whites and in African-Americans. Am. J. Respir. Crit. Care Med. 163:947–950, 2001.

    Google Scholar 

  14. Gleeson, K., Zwillich, C. W., and White, D. P., The influence of increasing ventilatory effort on arousal from sleep. Am. Rev. Respir. Dis. 142:295–300, 1990.

    Google Scholar 

  15. Benlloch, E., Cordero, P., Morales, P., et al., Ventilatory pattern at rest and response to hypercapnic stimulation in patients with obstructive sleep apnea syndrome. Respiration. 62:4–9, 1995.

    Article  Google Scholar 

  16. Ayas, N. T., Brown, R., and Shea, S. A., Hypercapnia can induce arousal from sleep in the absence of altered respiratory mechanoreception. Am. J. Respir. Crit. Care Med. 162:1004–1008, 2000.

    Google Scholar 

  17. Dement, W. C., Carskadon, M. A., and Richardson, G., Excessive daytime sleepiness in the sleep apnea syndrome. In: (Ed.), Sleep Apnea SyndromeAlan R. Liss, New York, 1978.

    Google Scholar 

  18. Kales, A., Cadieux, R. J., Bixler, E. O., et al., Severe obstructive sleep apnea. I: onset, clinical course, and characteristics. J. Chronic Dis. 38:419–425, 1985.

    Article  Google Scholar 

  19. Bassiri, A. G., and Guilleminault, C. G., Clinical features and evaluation of obstructive sleep apnea–hypopnea syndrome. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, pp. 870–871, 2000.

    Google Scholar 

  20. George, C. F., Nickerson, P. W., Hanly, P. J., et al., Sleep apnea patients have more automobile accidents. Lancet. 2:447, 1987.

    Article  Google Scholar 

  21. Findley, L. J., Unverzadt, M., and Suratt, P., Automobile accidents in patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 138:337–340, 1988.

    Google Scholar 

  22. Kryger, M. H., Roos, L., Delaive, K., et al., Utilization of health care services in patients with severe obstructive sleep apnea. Sleep. 19 (9 Suppl.)S111–S116, 1996.

    Google Scholar 

  23. Ball, E. M., Simon, R. D., Tall, A. A., et al., Diagnosis and treatment of sleep apnea within the community. The Walla Walla Project. Arch. Intern. Med. 157:419–424, 1997.

    Article  Google Scholar 

  24. Stradling, J. R., and Crosby, J. H., Relation between systemic hypertension and sleep hypoxemia and snoring: analysis in 748 men drawn from general practice. Br. Med. J. 300:75–78, 1990.

    Article  Google Scholar 

  25. Hoffstein, V., Snoring. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, pp. 813–826, 2000.

    Google Scholar 

  26. Bearpark, H., Elliott, L., Grunstein, R., et al., Snoring and sleep apnea: a population study in Australian men. Am. J. Respir. Crit. Care Med. 151:1459–1465, 1995.

    Google Scholar 

  27. Kryger, M. H., Monitoring respiratory and cardiac function. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, pp. 1217–1230, 2000.

    Google Scholar 

  28. Chervin, R. D., Use of clinical tools and tests in sleep medicine. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, p. 538, 2000.

    Google Scholar 

  29. Pillar, G., Malhotra, A., Fogel, R., et al., Airway mechanics and ventilation in response to resistive loading during sleep: influence of gender. Am. J. Respir. Crit. Care Med. 162:1627–1632, 2000.

    Google Scholar 

  30. Mohsenin, V., Gender differences in the expression of sleep-disordered breathing: role of upper airway dimensions. Chest. 120:1442–1447, 2001.

    Article  Google Scholar 

  31. Malhotra, A., Huang, Y., Fogel, R. B., et al., The male predisposition to pharyngeal collapse: importance of airway length. Am. J. Respir. Crit. Care Med. 166:1388–1395, 2002.

    Article  Google Scholar 

  32. Taasan, V. C., Block, A. J., Boysen, P. G., and Wynne, J. W., Alcohol increases sleep apnea and oxygen desaturation in asymptomatic men. Am. J. Med. 71:240–245, 1981.

    Article  Google Scholar 

  33. Issa, F. G., and Sullivan, C. E., Alcohol, snoring, and sleep apnea. J. Neurol. Neurosurg. Psychiatry. 45:353–359, 1982.

    Article  Google Scholar 

  34. Scrima, L., Broudy, M., Nay, K., and Cohn, M. A., Increased severity of obstructive sleep apnea after bedtime alcohol ingestion: diagnostic potential and proposed mechanism of actions. Sleep. 5:318–328, 1982.

    Google Scholar 

  35. Strobel, R. J., and Rosen, R. C., Obesity and weight loss in obstructive sleep apnea: a critical review. Sleep. 19:104–115, 1996.

    Google Scholar 

  36. Davies, R. J., Ali, N. J., and Stradling, J. R., Neck circumference and other clinical features in the diagnosis of the obstructive sleep apnoea syndrome. Thorax. 47:101–105, 1992.

    Article  Google Scholar 

  37. Mortimore, I. L., Marshall, I., Wraith, P. K., et al., Neck and total body fat deposition in non-obese and obese patients with sleep apnea compared with that in control subjects. Am. J. Respir. Crit. Care Med. 157:280–283, 1998.

    Google Scholar 

  38. Penze, T., McNames, J., de Chazal, P., Raymond, B., Murray, A., and Moody, G., Systematic comparison of different algorithms of apnoea detection based on electrocardiogram recordings. Med. Biol. Eng. Comput. 40:402–407, 2002.

    Article  Google Scholar 

  39. Lowe, A. A., Oral appliances for sleep breathing disorders. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, pp. 929–939, 2000.

    Google Scholar 

  40. Grunstein, R., and Sullivan, C., Continuous positive airway pressure for sleep breathing disorders. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, pp. 894–912, 2000.

    Google Scholar 

  41. Riley, R. W., Powell, N. B., Li, K. K., and Guilleminault, C., Surgical therapy for obstructive sleep apnea–hypopnea syndrome. In: (Ed.), Principles and Practice of Sleep MedicineSaunders, Philadelphia, pp. 913–928, 2000.

    Google Scholar 

  42. Akin, M., Kurt, M. B., Sezgin, N., and Bayram, M., Estimating vigilance level by using EEG and EMG signals. Neural Comput. Appl. 17:227–236, 2007. doi:10.1007/s00521-007-0117-7.

    Google Scholar 

  43. Potter, V. R., Bioethics: Bridge to the Future. Prentice-Hall, Englewood Cliffs, 1971.

    Google Scholar 

  44. Misiti, M., Misiti, Y., Oppenheim, G., and Poggi, J. M., Wavelet toolbox for use with Matlab, User’s Guide, Ver. 3, 2004.

  45. Akin, M., Comparison of wavelet transform and FFT methods in the analysis of EEG signals. J. Med. Syst. 26:241–247, 2002.

    Article  Google Scholar 

  46. Lin, R., Ren-Guey, L., Chwan-Lu, T., Heng-Kuan, Z., Chih-Feng, C., and Joe-Air, J., A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks. Yixué Gongchéng. Applications, Basis, Communications. 18 (3)138–143, 2006.

    Article  Google Scholar 

  47. Polikar, R., Multiresolution analyses: the discrete wavelet transform. http://www.public.iastate.edu/~rpolikar/Wavelets/Wtpart4.Html.

  48. Morchen, F., Time series feature extraction for data mining using DWT and DFT. Technical Report No. 33, Department of Mathematics and Computer Science, University of Marburg, Germany, 2003.

  49. Gevins, A., and Smith, M. E., Detecting transient cognitive impairment with EEG pattern recognition methods. Aviat. Space Environ. Med. 70 (10)1018–1024, 1999.

    Google Scholar 

  50. Peters, B. O., Pfurtscheller, G., and Flyvbjerg, H., Automatic differentiation of multichannel EEG signals. IEEE Trans. Biomed. Eng. 48:111–116, 2001.

    Article  Google Scholar 

  51. Jung, T. P., Makeig, S., Stensmo, M., and Sejnowski, T. J., Estimating alertness from the EEG power spectrum. IEEE Trans. Biomed. Eng. 44:60–69, 1997.

    Article  Google Scholar 

  52. Halici, U., Lecture notes on neural networks, the dynamic of brain multidisipliner. Diyarbakir, 1999.

  53. Khahill, M., and Duchene, J., Detection and classification of multiple events in piecewise stationary signals. J. Signal Process. 75 (3)239–251, 1999.

    Article  Google Scholar 

  54. Haykin, S., Neural Networks: A Comprehensive Foundation. Macmillan, New York, 1994.

    MATH  Google Scholar 

  55. Basheer, I. A., and Hajmeer, M., Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods. 43:3–31, 2000.

    Article  Google Scholar 

  56. Guler, N. F., and Ubeyli, E. D., Wavelet-based neural network analysis of ophthalmic artery Doppler signals. Comput. Biol. Med. 34 (7)601–613, 2004.

    Article  Google Scholar 

  57. Fausett, L., Fundamentals of Neural Networks Architectures, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, 1994.

    MATH  Google Scholar 

  58. Eyfe, C., Artificial Neural Network. The University of Paisley, Edition 1.1, 1996.

  59. Clabian, M., Nussbaum, C., Pfutzner, H., Artificial neural networks for apnea detection. Proc. EANN, pp. 601–608, 1996.

  60. Clabian, M., Pfiitzner, H., Determination of decisive inputs of a neural network for sleep apnea classification. Proc. EANN, pp. 171–178, 1997.

  61. Zemen, T., Clabian, M., Pfützner, H., Classification of sleep apnea events by means of radial basis function networks. In: A New Method for Sleep Apnea Classification Using Wavelets and Feedforward Neural Networks. 75 International ICSC/IFAC Symposium on Neural Computation (NC98), pp. 351–357, 1998.

  62. Fontenla-Romero, O., Guijarro-Berdinas, B., Alonso-Betanzos, A., and Moret-Bonillo, V., A new method for sleep apnea classification using wavelets and feedforward neural networks. Artif. Intell. Med. 34:65–76, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Sezgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagluk, M.E., Sezgin, N. Classification of Sleep Apnea through Sub-band Energy of Abdominal Effort Signal Using Wavelets + Neural Networks. J Med Syst 34, 1111–1119 (2010). https://doi.org/10.1007/s10916-009-9330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9330-5

Keywords

Navigation