Skip to main content

Advertisement

Log in

Fuzzy Clustered Probabilistic and Multi Layered Feed Forward Neural Networks for Electrocardiogram Arrhythmia Classification

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The role of electrocardiogram (ECG) as a noninvasive technique for detecting and diagnosing cardiac problems cannot be overemphasized. This paper introduces a fuzzy C-mean (FCM) clustered probabilistic neural network (PNN) for the discrimination of eight types of ECG beats. The performance has been compared with FCM clustered multi layered feed forward network (MLFFN) trained with back propagation algorithm. Important parameters are extracted from each ECG beat and feature reduction has been carried out using FCM clustering. The cluster centers form the input of neural network classifiers. The extensive analysis using the MIT-BIH arrhythmia database has shown an average classification accuracy of 97.54% with FCM clustered MLFFN and 99.58% with FCM clustered PNN. Fuzzy clustering improves the classification speed as well. The result reveals the capability of the FCM clustered PNN in the computer-aided diagnosis of ECG abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rajendra Acharya, U., Subhanna Bhat, P., Iyengar, S. S., Rao, A., and Dua, S., Classification of heart rate data using artificial neural network and fuzzy equivalence relation. J. Pattern Recogn. 36 (1)61–68, 2003.

    Article  MATH  Google Scholar 

  2. Reddy, D. C., Biomedical signal processing principles and techniques. McGraw-Hill, New Delhi, p. 255, 2005.

    Google Scholar 

  3. Caswell, S. A., Kluge, K. S., Chiang, C. M. J., and Jenkins, J. M., Pattern recognition of cardiac arrhythmias using two intracardiac channels. In: Proceedings of Computers in Cardiology. London, UK, pp. 181–184, 1993.

  4. Thakor, N. V., Natarajan, A., and Tomaselli, G. F., Multi way sequential hypothesis testing for tachyarrhythmia discrimination. IEEE Trans. Biomed. Eng. 41 (5)480–487, 1994.

    Article  Google Scholar 

  5. Afonoso, V. X., and Tompkins, W. J., Detecting ventricular fibrillation: Selecting the appropriate time- frequency analysis tool for the application. IEEE Eng. Med. Biol. Mag. 14 (2)152–159, 1995.

    Article  Google Scholar 

  6. Finelli, C. J., The time sequenced adaptive filter for analysis of cardiac arrhythmias in intraventricular electrocardiograms. IEEE Trans. Biomed. Eng. 43 (8)811–819, 1996.

    Article  Google Scholar 

  7. Senhadji, L., Carrault, G., Bellanger, J. J., and Passariello, G., Comparing wavelet transforms for recognizing cardiac patterns. IEEE. Eng. Med. Biol. 14 (2)167–173, 1995.

    Article  Google Scholar 

  8. Khadra, L., Al-Fahoum, A. S., and Al-Nashash, H., Detection of life threatening cardiac arrhythmias using the wavelet transformation. Med. Biol. Eng. Comput. 35 (6)626–632, 1997.

    Article  Google Scholar 

  9. Tian, L., and Tompinks, W. J., Time domain based algorithm for detection of ventricular fibrillation. In: Proceedings of EMBS 19th Annual International Conference, Chicago, pp. 374–377, 1997.

  10. Zhang, X. S., Zhu, Y. S., Thakor, N. V., and Wang, Z. Z., Detecting ventricular tachycardia and fibrillation by complexity measure. IEEE Trans. Biomed. Eng. 46 (5)548–555, 1999.

    Article  Google Scholar 

  11. Chen, S. W., A Two stage discrimination of cardiac arrhythmia using a total least squre-based prony modeling algorithm. IEEE Trans. Biomed. Eng. 47 (10)1317–1327, 2000.

    Article  Google Scholar 

  12. Owis, M. I., Abou-Zied, Youssef, A., and Kadah, Y. M., Study of features based on nonlinear dynamic modeling in ECG arrhythmia detection and classification. IEEE Trans. Biomed. Eng. 49 (7)733–736, 2002.

    Article  Google Scholar 

  13. Hu, Y. H., Tompkins, W. J., Urrusti, J. L., and Alfonso, V. X., Applications of artificial neural networks for ECG signal detection and classification. J. Electrocard. 28 (supplement)66–73, 1994.

    Google Scholar 

  14. Silipo, R., and Marchesi, C., Artificial neural networks for automatic ECG analysis. IEEE Trans. Signal Process. 46 (5)1417–1425, 1998.

    Article  Google Scholar 

  15. Melo, S. L., Caloba, L. P., and Nadal, J., Arrhythmia analysis using artificial neural networks and decimated electrocardiographic data. Comput. Cardio. 27:73–76, 2000.

    Google Scholar 

  16. Issac Niwas, S., Shantha Selva Kumari, R., and Sadasivam, V., Artificial neural network based automatic cardiac abnormalities classification. In: Proceedings of 6th International Conference on Computational Intelligence and Multimedia Applications (ICCIMA), pp. 41–46, 2005.

  17. Haykin, S., Neural Networks: A comprehensive foundation. Macmillan, New York, 1994.

    MATH  Google Scholar 

  18. Al-Fahoum, A. S., and Howitt, I., Combined wavelet transformation and radial basis neural networks for classifying life-threatening cardiac arrhythmias. Med. Biol. Eng. Comput. 37 (1)566–573, 1999.

    Article  Google Scholar 

  19. Minami, K., Nakajima, H., and Toyoshima, T., Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans. Biomed. Eng. 46 (2)179–185, 1999.

    Article  Google Scholar 

  20. Osowski, S., and Linh, T. H., ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48 (11)1265–1271, 2001.

    Article  Google Scholar 

  21. Dokur, Z., and Olmez, T., ECG beat classification by a hybrid neural network. Comp. Methods Progr. Biomed. 66:167–181, 2001.

    Article  Google Scholar 

  22. Engin, M., and Demirag, S., Fuzzy- hybrid neural network based ECG beat recognition using three different types of feature sets. Cardiovasc. Eng. Int. J. 3 (2)71–80, 2003.

    Article  Google Scholar 

  23. Ceylan, R., and Ozbay, Y., Comparison of FCM, PCA and WT techniques for classification of ECG arrhythmias using artificial neural network. Expert Syst. Appl. 33 (2)286–295, 2007.

    Article  Google Scholar 

  24. Ozbay, Y., Ceylan, R., and Karlik, B., A fuzzy clustering neural network architecture for classification of ECG arrhythmia. Comput. Biol. Med. 36:376–388, 2006.

    Article  Google Scholar 

  25. Yu, S.-N., and Chen, Y.-H., Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28 (10)1142–1150, 2007.

    Article  Google Scholar 

  26. Jayachandran, E., Joseph, P. K., and Rajendra Acharya,U., Analysis of myocardial infraction using discrete wavelet transform. J. Med. Syst., 2009 doi:10.1007/s10916-009-9314-5.

  27. Yu, S.-N., and Chou, K.-T., Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34:2841–2846, 2008.

    Article  Google Scholar 

  28. Heu Hu, Y., Palreddy, S., and Tompkins, W. J., A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans. Biomed. Eng. 44 (9)891–900, 1997.

    Article  Google Scholar 

  29. MacQueen, J. B., Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. University of California Press, Berkeley, pp. 281–297, 1967.

    Google Scholar 

  30. Maulik, U., and Bandyopadhyay, S., Performance evaluation of some clustering algorithm and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24 (12)1650–1654, 2002.

    Article  Google Scholar 

  31. Kohenen, T., Self Organizing Maps. Springer, Berlin, 1995.

    Google Scholar 

  32. Clifford, G. D., Azuaje, F., and McSharry, P. E., Advanced methods and tools for ECG data analysis. Artech House, London, 2006.

    Google Scholar 

  33. İnan, Z., and Kuntalp, M., A study on fuzzy C-means clustering-based systems in automatic spike detection. Compu. Biol. and Med. 37 (8)1160–1166, 2007.

    Article  Google Scholar 

  34. Bezdek, J., Pattern recognition with fuzzy objective function algorithms. Plenum, USA, 1981.

    MATH  Google Scholar 

  35. Dunn, J. C., A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters. J. Cybern. 3 (3)32–57, 1974.

    Article  MathSciNet  Google Scholar 

  36. Nefti, S., and Oussalah, M., Probabilistic-fuzzy clustering algorithm. IEEE International Conference on Systems, Man and Cybemetics (5):4786–4791, 2004.

  37. Alata, M., Molhim, M., and Ramini, A., Optimizing of fuzzy C-means clustering algorithm using GA. Proceedings of World Academy of Science, Engineering and Technology, vol. 39, 2008.

  38. Ubeyli, E. D., Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals. Compt. Biol. Med. 38:82–89, 2008.

    Article  Google Scholar 

  39. Rutkowski, L., Adaptive probabilistic neural networks for pattern classification in time varying environment. IEEE Trans. Neural Netw. 15:811–827, 2004.

    Article  Google Scholar 

  40. Berthold, M. R., and Diamond, J., Constructive training of probabilistic neural networks. Neuro Comput. 19:167–183, 1998.

    Google Scholar 

  41. PhysioNet. The research resource for complex physiologic signals. http://www.physionet.org/.

  42. Tan, K. F., Chan, K. L., and Choi, K., Detection of the QRS complex, P wave and T wave in Electrocardiogram. In: First International Conference on Advances in Medical Signal and Information Processing Proceedings, pp. 41–47, 2000.

  43. Daskalov, K., Dotsinsky, I. A., and Christov, I. I., Developments in ECG acquisition, preprocessing, parameter measurement, and recording. IEEE Eng. Med. Biol. 17 (1)50–58, 1998.

    Article  Google Scholar 

  44. Mathworks Inc., Neural Networks Toolbox User’s Guide, version.3 (Release 11), 1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hamsa Haseena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haseena, H.H., Mathew, A.T. & Paul, J.K. Fuzzy Clustered Probabilistic and Multi Layered Feed Forward Neural Networks for Electrocardiogram Arrhythmia Classification. J Med Syst 35, 179–188 (2011). https://doi.org/10.1007/s10916-009-9355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9355-9

Keywords

Navigation