Skip to main content
Log in

Classification of Arrhythmia Using Hybrid Networks

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Reliable detection of arrhythmias based on digital processing of Electrocardiogram (ECG) signals is vital in providing suitable and timely treatment to a cardiac patient. Due to corruption of ECG signals with multiple frequency noise and presence of multiple arrhythmic events in a cardiac rhythm, computerized interpretation of abnormal ECG rhythms is a challenging task. This paper focuses a Fuzzy C- Mean (FCM) clustered Probabilistic Neural Network (PNN) and Multi Layered Feed Forward Network (MLFFN) for the discrimination of eight types of ECG beats. Parameters such as fourth order Auto Regressive (AR) coefficients along with Spectral Entropy (SE) are extracted from each ECG beat and feature reduction has been carried out using FCM clustering. The cluster centers form the input of neural network classifiers. The extensive analysis of Massachusetts Institute of Technology- Beth Israel Hospital (MIT-BIH) arrhythmia database shows that FCM clustered PNNs is superior in cardiac arrhythmia classification than FCM clustered MLFFN with an overall accuracy of 99.05%, 97.14%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Coast, A. D., Stern, R. M., Cano, G. G., and Briller, S. A., An approach to cardiac arrhythmia analysis using hidden Markov models. IEEE Trans. Biomed. Eng. 37:826–835, 1990.

    Article  Google Scholar 

  2. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., and Sornmo, L., Clustering ECG complexes using hermite functions and self-organizing Maps. IEEE Trans. Biomed. Eng. 47:838–848, 2000.

    Article  Google Scholar 

  3. Thakor, N. V., Natarajan, A., and Tomaselli, G. F., Multi way sequential hypothesis testing for tachyarrhythmia discrimination. IEEE Trans. Biomed. Eng. 41(5):480–487, 1994.

    Article  Google Scholar 

  4. Afonoso, V. X., and Tompkins, W. J., Detecting ventricular fibrillation: Eelecting the appropriate time frequency analysis tool for the application. IEEE Eng. Med. Biol. Mag. 14(2):152–159, 1995.

    Article  Google Scholar 

  5. Finelli, C. J., The time sequenced adaptive filter for analysis of cardiac arrhythmias in intraventricular electrocardiograms. IEEE Trans. Biomed. Eng. 43(8):811–819, 1996.

    Article  Google Scholar 

  6. Zhang, X. S., Zhu, Y. S., Thakor, N. V., and Wang, Z. Z., Detecting ventricular tachycardia and fibrillation by complexity measure. IEEE Trans. Biomed. Eng. 46(5):548–555, 1999.

    Article  Google Scholar 

  7. Chen, S. W., A two stage discrimination of cardiac arrhythmia using a total least squre-based prony modeling algorithm. IEEE Trans. Biomed. Eng. 47(10):1317–1327, 2000.

    Article  Google Scholar 

  8. Caswell, S. A., Kluge, K. S., Chiang, C. M. J., and Jenkins, J. M., Pattern recognition of cardiac arrhythmias using two intracardiac channels. Proceedings of Computers in Cardiology, London, UK, pp.181–184, Sep. 5–8, 1993.

  9. Owis, M. I., Abou-Zied, A. H., Youssef, A. M., and Kadah, Y. M., Study of features based on nonlinear dynamic modeling in ECG arrhythmia detection and classification. IEEE Trans. Biomed. Eng. 49(7):733–736, 2002.

    Article  Google Scholar 

  10. Ham, F. M., and Han, S., Classification of cardiac arrhythmias using fuzzy ARTMAP. IEEE Trans. Biomed. Eng. 43:425–430, 1996.

    Article  Google Scholar 

  11. Senhadji, L., Carrault, G., Bellanger, J. J., and Passariello, G., Comparing wavelet transforms for recognizing cardiac patterns. IEEE Eng. Med. Biol. Mag. 14(2):167–173, 1995.

    Article  Google Scholar 

  12. Ge, D., Srinivasan, N., and Krishnan, S. M., Cardiac arrhythmia classification using autoregressive modelling, Biomed. Eng. Online, doi:10.1186/1457-925X-1-5, November 2002.

  13. Ge, D.-F., Hou, B.-P., and Xiang, X.-J., Study of feature based on auto regressive modeling in ECG Automatic Diagnosis. ACTA Automat. Sinica, 33(5):462–466, 2007.

    MATH  Google Scholar 

  14. Christinin, D. J., Bennett, F. M., Lutchen, K. R., Ahmed, H. M., Hausdorff, J. M., and Oriol, N., Application of linear and non linear time series modeling to heart rate dynamics analysis. IEEE Trans. Biomed. Eng. 42(4):411–415, 1995.

    Article  Google Scholar 

  15. Wang, Y., Zhu, Y. S., Thakor, N. V., and Xu, Y. H., A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Trans. Biomed. Eng. 48:989–995, 2001.

    Article  Google Scholar 

  16. Exarchos, T. P., Tsipouras, M. G., Exarchos, C. P., Papaloukas, C., Fotiadis, D. I., and Michalis, L. K., A methodology for the automated creation of fuzzy expert systems for ischemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artif. Intell. Med. 40(3):187–200, 2007.

    Article  Google Scholar 

  17. Ripley, B. D., Pattern Recognition and Neural Networks, Cambridge University Press, New York, 1996.

  18. Padhy, N. P., Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms. Elect. Power Energy Syst. 23:827–836, 2000.

    Article  Google Scholar 

  19. Fu, L. M., Neural Networks in Computer Intelligence. McGraw-Hill, Inc., New York, USA, 1994.

  20. Perner, P., Intelligent data analysis in medicine—recent advances. Artif. Intell. Med. 37(1):1–5, 2006.

    Article  Google Scholar 

  21. Silipo, R., and Marchesi, C., Artificial neural networks for automatic ECG analysis. IEEE Trans. Signal Process. 46(5):1417–1425, 1998.

    Article  Google Scholar 

  22. Yu, Y. H., Tompkins, W. J., Urrusti, J. L., and Alfonso, V. X., Applications of artificial neural networks for ECG signal detection and classification. J. Electrocard. 28 supplement, 66–73, 1994.

    Google Scholar 

  23. Issac Niwas, S., Shantha Selva Kumari, R., and Sadasivam, V., Artificial neural network based automatic cardiac abnormalities classification. In: Proceedings of 6th International Conference on Computational Intelligence and Multimedia Applications (ICCIMA), IEEE Computer Society Press, Las Vegas, Nevada, pp. 41–46, 2005.

  24. Yu, S.-N., and Chen, Y.-H., Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28(10):1142–1150, 2007.

    Article  Google Scholar 

  25. http://www.physionet.org/

  26. Clifford, G. D., Azuaje, F., and McSharry, P. E., Advanced methods and tools for ECG data analysis. Artech House, London, 2006.

    Google Scholar 

  27. Tompkins, W. J., Biomedical digital signal processing. Prentice Hall, Englewood Cliff, pp. 253–261, 1993.

    Google Scholar 

  28. Anuradha, V. C., and Veera Reddy, B., ANN for classification of cardiac arrhythmias. ARPN J. Eng. and Appl. Sci. 3(3):1–6, 2008.

    Google Scholar 

  29. Sinha, N. K., and Kuszta, B., Modelling and Identification of Dynamic Systems. Van Nostrand Reinhold Company, New York, p. 263, 1983.

    Google Scholar 

  30. Zadeh, L., Fuzzy sets. Inf. Control. 8:338–352, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  31. Dunn, J., A fuzzy relative of the Isodata process and its use in detecting compact, well separated clusters. J. Cybern. 3(3):32–57, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  32. Bezdek, J., Pattern recognition with fuzzy objective function algorithms. Plenum, New York, 1981.

    MATH  Google Scholar 

  33. Bezdek, J., and Hathaway, R., Recent convergence results for the fuzzy c-means clustering algorithms. J. Classif. 5(2):237–247, 1988.

    Article  MathSciNet  Google Scholar 

  34. Gustafson, G., and Kessel, W., Fuzzy clustering with a fuzzy covariance matrix. Proceedings of the 37th IEEE Conference on Decision and Control (CDC), pp. 761–766, San Diego, 1979.

  35. Kruse, R., Hoppner, F., Klawonn, F., and Runkler, T., Fuzzy cluster analysis, John Wiley and Sons Publishers, 1999.

  36. Dave, R., Fuzzy shell-clustering and applications to circle detection of digital images. Int. J. Gen. Syst. 16(4):343–355, 1990.

    Article  MathSciNet  Google Scholar 

  37. Bobrowski, L., and Bezdek, J., C-means with l1 and l1 norms. IEEE Trans. Syst. Man and Cyber. 21(3):545–554, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  38. Nefti, S., and Oussalah, M., Probabilistic-fuzzy clustering algorithm. IEEE Trans. Systems, Man & Cybemetics 5:4786–4791, 2004.

    Google Scholar 

  39. Haykin, S., and Networks, N., A comprehensive foundation. Macmillan College Publishing Company, New York, 1994.

    MATH  Google Scholar 

  40. MATLAB 6.1, Mathworks Inc., Neural networks toolbox user’s guide, version.4.0.1 (Release 12), 2001.

  41. Cho, S.-Y., Probabilistic based recursive model for adaptive processing of data structures. Expert Syst. Appl. 34:1403–1422, 2008.

    Article  Google Scholar 

  42. Ubeyli, E. D., Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals. Compt. Biol. Med. 38:82–89, 2008.

    Article  Google Scholar 

  43. Karthikeyan, B., Gopal, S., and Venkatesh, S., Partial discharge pattern classification using composite versions of probabilistic neural network inference engine. Expert Syst. Appl. 34:1938–1947, 2008.

    Article  Google Scholar 

  44. Kanmani, S., Rhymend Uthariaraj, V., Sankaranarayanan, V., and Thambidurai, P., Object-oriented software fault prediction using neural networks. Inf. Softw. Technol. 49:483–492, 2007.

    Article  Google Scholar 

  45. Rutkowski, L., Adaptive probabilistic neural networks for pattern classification in time varying environment. IEEE Trans. Neural Netw. 15:811–827, 2004.

    Article  Google Scholar 

  46. Tsai, C.-Y., An iterative feature reduction algorithm for probabilistic neural networks. Omega 28:513–524, 2000.

    Article  Google Scholar 

  47. Berthold, M. R., and Diamond, J., Constructive training of probabilistic neural networks. Neurocomputing 19:167–183, 1998.

    Article  Google Scholar 

  48. Melo, S. L., Caloba, L. P., and Nadal, J., Arrhythmia analysis using artificial neural networks and decimated electrocardiographic data. Comput. Cardiol. 27:73–76, 2000.

    Google Scholar 

  49. Yu, S.-N., and Chou, K.-T., Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34:2841–2846, 2008.

    Article  Google Scholar 

  50. Hu, Y. H., Palreddy, S., and Tomkins, W. J., A patient adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans. Biomed. Eng. 44:891–900, 1997.

    Article  Google Scholar 

  51. Minami, K., Nakajima, H., and Toyoshima, T., Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Trans. Biomed. Eng. 46(2):179–185, 1999.

    Article  Google Scholar 

  52. Prasad, G. K., and Sahambi, J. S., Classification of ECG arrhythmias using multi-resolution analysis and neural networks, Proceedings of IEEE Conference on Convergent Technologies (Tecon)(1), Bangalore, India, 227–231, 2003.

  53. Haseena, H. H., Mathew, A. T., and Paul, J. K., Fuzzy clustered probabilistic and multi layered feed forward neural networks for electrocardiogram arrhythmia classification. J. Med. Syst. Online, doi:10.1007/S10916-009-9355-9, August 2009.

Download references

Conflict of interest statement

All the authors have read the enclosed version of the manuscript and agreed with the contents. None of the authors have received any financial support to conduct this work. The article is not under consideration for publication in the same or in any other form in any other form in any other journal. No other conflict of interest is involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan H. Haseena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haseena, H.H., Joseph, P.K. & Mathew, A.T. Classification of Arrhythmia Using Hybrid Networks. J Med Syst 35, 1617–1630 (2011). https://doi.org/10.1007/s10916-010-9439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9439-6

Keywords

Navigation