Skip to main content

Advertisement

Log in

Sparse Representation-Based Heartbeat Classification Using Independent Component Analysis

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The classification of heartbeats is crucial to identify an arrhythmia. This paper proposes a new method that combines independent component analysis (ICA) with sparse representation-based classification (SRC) to distinguish eight types of heartbeats. We use ICA to extract useful features from heartbeats. A feature vector consists of 100 ICA features along with a RR interval. We use SRC to compute a sparse representation of a test feature vector with respect to all training feature vectors. The type of a test feature vector is determined using the concentration degree of sparse coefficients on each heartbeat type. For experimental purposes, 9800 heartbeats are extracted from the MIT-BIH electrocardiogram (ECG) database. The results show that our proposed method performs better than conventional methods, with 98.35% accuracy and 94.49%–100% sensitivities to several heartbeat types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Chazal, P., O’Dwyer, M., and Reilly, R. B., Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7):1196–1206, 2004.

    Article  Google Scholar 

  2. Osowski, S., and Linh, T. H., ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48(11):1265–1271, 2001.

    Article  Google Scholar 

  3. Yeh, Y. C., Wang, W. J., and Chiou, C. W., Feature selection algorithm for ECG signals using range-overlaps method. Expert. Syst. Appl. 37:3499–3512, 2010.

    Article  Google Scholar 

  4. Minhas, F. A., and Arif, M., Robust electrocardiogram (ECG) beat classification using discrete wavelet transform. Physiol. Meas. 29:555–570, 2008.

    Article  Google Scholar 

  5. Yu, S. N., and Chen, Y. H., Electrocardiogram beat classification based on wavelet transformation and probabilistic beural network. Pattern Recogn. Lett. 28(10):1142–1150, 2007.

    Article  Google Scholar 

  6. Yu, S. N., and Chou, K. T., Integration of independent component analysis and neural networks for ECG beat classification. Expert. Syst. Appl. 34:2841–2846, 2008.

    Article  Google Scholar 

  7. Yu, S. N., and Chou, K. T., Selection of significant independent components for ECG beat classification. Expert. Syst. Appl. 36:2088–2096, 2009.

    Article  Google Scholar 

  8. Jiang, X., Zhang, L. Q., Zhao, Q. B., and Albayrak, S., ECG arrhythmias recognition system based on independent component analysis feature extraction. TENCON 2006. 2006 IEEE Region 10 Conference, Hong Kong, China, 1–4, 2006.

  9. Osowski, S., Linh, T. H., and Markiewcz, T., Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51:582–589, 2004.

    Article  Google Scholar 

  10. Yeh, Y. C., Wang, W. J., and Chiou, C. W., Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals. Measurement 42:778–789, 2009.

    Article  Google Scholar 

  11. Christov, I., Jekova, I., and Bortolan, G., Premature ventricular contractionsclassification by the Kth nearest-neighbours rule. Physiol. Meas. 26:123–130, 2005.

    Article  Google Scholar 

  12. Güler, İ., and Übeyli, E. D., A modified mixture of experts network structure for ECG beats classification with diverse features. Eng. Appl. Artif. Intell. 18:845–856, 2005.

    Article  Google Scholar 

  13. Güler, İ., and Übeyli, E. D., ECG beat classifier designed by combined neural network model. Pattern Recognit. 38:199–208, 2005.

    Google Scholar 

  14. Übeyli, E. D., Combining recurrent neural networks with eigenvector methods for classification of ECG beats. Digit. Signal Process. 19:320–329, 2009.

    Article  Google Scholar 

  15. Acir, N., A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert. Syst. Appl. 31:150–158, 2006.

    Article  Google Scholar 

  16. Übeyli, E. D., ECG beats classification using multiclass support vector machines with error correcting output codes. Digit. Signal Process. 17:675–684, 2007.

    Article  Google Scholar 

  17. Übeyli, E. D., Usage of eigenvector methods in implementation of automated diagnostic systems for ECG beats. Digit. Signal Process. 18:33–48, 2008.

    Article  Google Scholar 

  18. Donoho, D., For most large underdetermined systems of linear equations the minimal l 1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6):797–829, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  19. Candès, E., Romberg, J., and Tao, T., Stable signal recovery form incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8):1207–1223, 2006.

    Article  MATH  Google Scholar 

  20. Candès, E., and Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12):5406–5425, 2006.

    Article  Google Scholar 

  21. Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y., Robust face recognition via sparse representation. IEEE Trans. PAMI. 31(2):210–227, 2009.

    Article  Google Scholar 

  22. Comon, P., Independent component analysis, A new concept? Signal Process. 36:287–314, 1994.

    Article  MATH  Google Scholar 

  23. Hyvärinen, A., and Oja, E., Independent component analysis: algorithms and application. Neural Netw. 13(4–5):411–430, 2000.

    Article  Google Scholar 

  24. Mark, R., and Moody, G., MIT-BIH Arrhythmia Database, available online: http://www.physionet.org/physiobank/database/mitdb/, 1997.

  25. Hyvärinen, A., Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural. Netw. 10(3):626–634, 1999.

    Article  Google Scholar 

  26. Amaldi, E., and Kann, V., On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor. Comput. Sci. 209:237–260, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  27. Figueiredo, M. A. T., Nowak, R. D., and Wright, S. J., Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problem. IEEE J. Sel. Top. Signa. 1:586–597, 2007.

    Article  Google Scholar 

  28. Candès, E. J., and Wakin, M. B., An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2):21–30, 2008.

    Article  Google Scholar 

  29. Baraniuk, R. G., Compressive sensing. IEEE Signal Process. Mag. 24(4):118–121, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Shu Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H.F., Hu, G.S. & Zhu, L. Sparse Representation-Based Heartbeat Classification Using Independent Component Analysis. J Med Syst 36, 1235–1247 (2012). https://doi.org/10.1007/s10916-010-9585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9585-x

Keywords

Navigation