Skip to main content

Advertisement

Log in

Application of Bayesian Classifier for the Diagnosis of Dental Pain

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Toothache is the most common symptom encountered in dental practice. It is subjective and hence, there is a possibility of under or over diagnosis of oral pathologies where patients present with only toothache. Addressing the issue, the paper proposes a methodology to develop a Bayesian classifier for diagnosing some common dental diseases (D = 10) using a set of 14 pain parameters (P = 14). A questionnaire is developed using these variables and filled up by ten dentists (n = 10) with various levels of expertise. Each questionnaire is consisted of 40 real-world cases. Total 14*10*10 combinations of data are hence collected. The reliability of the data (P and D sets) has been tested by measuring (Cronbach’s alpha). One-way ANOVA has been used to note the intra and intergroup mean differences. Multiple linear regressions are used for extracting the significant predictors among P and D sets as well as finding the goodness of the model fit. A naïve Bayesian classifier (NBC) is then designed initially that predicts either presence/absence of diseases given a set of pain parameters. The most informative and highest quality datasheet is used for training of NBC and the remaining sheets are used for testing the performance of the classifier. Hill climbing algorithm is used to design a Learned Bayes’ classifier (LBC), which learns the conditional probability table (CPT) entries optimally. The developed LBC showed an average accuracy of 72%, which is clinically encouraging to the dentists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kiani, M., and Sheikhazadi, A., A five-year survey for dental malpractice claims in Tehran, Iran. J. Forensic Leg. Med. 16(2):76–82, 2009.

    Article  Google Scholar 

  2. Tversky, A., and Kahneman, D., Judgment under uncertainty: Heuristics and Biases Amos Tversky. Sci. New Ser. 85(4157):1124–1131, 1974.

    Google Scholar 

  3. Shortliffe, E. H., and Cimino, J. J., Biomedical informatics-computer applications in health care and biomedicine, 3rd edition. Springer, New York, 2006.

    Google Scholar 

  4. Locker, D., and Grushka, M., Prevalence of oral and facial pain and discomfort: Preliminary results of a mail survey. Community Dent. Oral Epidemiol. 15(3):169–172, 1987.

    Article  Google Scholar 

  5. Borra, R. C., Andrade, P. M., Corrêa, L., and Novelli, M. D., Development of an open case-based decision-support system for diagnosis in oral pathology. Eur. J. Dent. Educ. 11(2):87–92, 2007.

    Article  Google Scholar 

  6. White, S. C., Decision-support systems in dentistry. J. Dent. Educ. 60(1):47–63, 1996.

    Google Scholar 

  7. Raab, W. H., Acute and chronic toothache. Dtsch Zahnärztl. Z. 46(2):101–108, 1991.

    Google Scholar 

  8. Paris, M., Trunde, F., Bossard, D., Farges, J. C., and Coudert, J. L., Dental ankylosis diagnosed by CT with tridimensional reconstructions. J. Radiol. 91(6):707–711, 2010.

    Article  Google Scholar 

  9. Cunha-Cruz, J., Wataha, J. C., Zhou, L., Manning, W., Trantow, M., Bettendorf, M. M., et al., J. Am. Dent. Assoc. 141(9):1097–1105, 2010.

    Google Scholar 

  10. Khan, J., Heir, G. M., and Quek, S. Y., Cerebellopontine angle (CPA) tomor mimicking dental pain following facial trauma. Cranio 28(3):205–208, 2010.

    Google Scholar 

  11. Weisleder, R., Yamauchi, S., Caplan, D. J., Trope, M., and Teixeira, F. B., The validity of pulp testing: A clinical study. J. Am. Dent. Assoc. 140(8):1013–1017, 2009.

    Google Scholar 

  12. Firriolo, F. J., and Wang, T., Diagnosis of selected pulpal pathoses using an expert computer system. Oral Surg. Oral Med. Oral Pathol. 76(3):390–396, 1993.

    Article  Google Scholar 

  13. Umar, H., Capabilities of computerized clinical decision support systems: The implications for the practicing dental professional. J. Contemp. Dent. Pract. 3(1):27–42, 2002.

    Google Scholar 

  14. Rudin, J. L., DART (Diagnostic Aid and Resource Tool): A computerized clinical decision support system for oral pathology. Compend. 15(11):1316, 1318, 1320, 1994.

    Google Scholar 

  15. Mercer, P. E., and Ralph, J. P., Computer-assisted learning and the general dental practitioner. Br. Dent. J. 184(1):43–46, 1998.

    Article  Google Scholar 

  16. Ralls, S. A., Cohen, M. E., and Southard, T. E., Computer-assisted dental diagnosis. Dent. Clin. North Am. 30(4):695–712, 1986.

    Google Scholar 

  17. Zhizhina, N. A., Prokhonchukov, A. A., Balashov, A. N., and Pelkovskiĭ, V Iu, The DIAST automated computer system for the differential diagnosis and treatment of periodontal diseases. Stomatologiia (Mosk.) 76(6):50–55, 1997.

    Google Scholar 

  18. Grigg, P., and Stephens, C. D., Computer-assisted learning in dentistry a view from the UK. J. Dent. 26(5–6):387–395, 1998.

    Article  Google Scholar 

  19. Araki, K., Matsuda, Y., Seki, K., and Okano, T., Effect of computer assistance on observer performance of approximal caries diagnosis using intraoral digital radiography. Clin. Oral Investig. 14(3):319–325, 2010.

    Article  Google Scholar 

  20. deDombal, F. T., Leaper, D. J., Staniland, J. R., McCann, A. P., and Horrock, J. C., Computer-aided diagnosis of acute abdominal pain. BMJ 2:9–13, 1972.

    Article  Google Scholar 

  21. Cooper, G. F., and Herskovits, E., A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4):309–347, 1992.

    MATH  Google Scholar 

  22. Berry, D. A., Bayesian statistics and the efficiency and ethics of clinical trials. Stat. Sci. 19(1):175–187, 2004.

    Article  MATH  Google Scholar 

  23. Tan, S. B., Introduction to Bayesian methods for medical research. Ann. Acad. Med. Singapore 30:445, 2001.

    Google Scholar 

  24. Stojadinovic, A., Peoples, G. E., Libutti, S. K., Henry, L. R., Eberhardt, J., Howard, R. S., et al., Development of a clinical decision model for thyroid nodules. BMC Surg. 9:12, 2009.

    Article  Google Scholar 

  25. Nissan, A., Protic, M., Bilchik, A., Eberhardt, J., Peoples, G. E., and Stojadinovic, A., Predictive model of outcome of targeted nodal assessment in colorectal cancer. Ann. Surg. 251(2):265–274, 2010.

    Article  Google Scholar 

  26. Gilthorpe, M. S., Maddick, I. H., and Petrie, A., Introduction to Bayesian modelling in dental research. Community Dent. Health 17(4):218, 2000.

    Google Scholar 

  27. Nieri, M., Rotundo, R., Franceschi, D., Cairo, F., Cortellini, P., and Prato, G. P., Factors affecting the outcome of the coronally advanced flap procedure: A Bayesian network analysis. J. Periodontol. 80(3):405–410, 2009.

    Article  Google Scholar 

  28. Mago, V. K., Prasad, B., Bhatia, A., and Mago, A., A decision making system for the treatment of dental caries, in Soft computing applications in business, Prasad B. (Ed.) Vol. 230. Springer, Berlin, pp. 231–242, 2008.

  29. Bandyopadhyay, D., Reich, B. J., and Slate, E. H., Bayesian modeling of multivariate spatial binary data with applications to dental caries. Stat. Med. 28(28):3492–3508, 2009.

    Article  MathSciNet  Google Scholar 

  30. Komarek, A., Lesaffre, E., Harkanen, T., Declerck, D., and Virtanen, J. I., A Bayesian analysis of multivariate doubly-interval-censored dental data. Biostatistics 6(1):145–155, 2005.

    Article  MATH  Google Scholar 

  31. Nie, N., Bent, D. H., and Hull, C. H., Statistical package for the social sciences, McGraw-Hill. Eds 1 & 2, 1970, 1975.

  32. Taylor, G. W., Manz, M. C., and Borgnakke, W. S., Diabetes, periodontal diseases, dental caries, and tooth loss: A review of the literature. Compend. Contin. Educ. Dent. 25(3):179–184, 2004.

    Google Scholar 

  33. Pihlstrom, B. L., Michalowicz, B. S., and Johnson, N. W., Periodontal diseases. Lancet 366(9499):1809–1820, 2005.

    Article  Google Scholar 

  34. Cronbach, L. J., Coefficient alpha and the internal structure of tests. Psychometrika 16(3):297–334, 1951.

    Article  Google Scholar 

  35. Santos, J. R. A., Cronbach’s alpha: A tool for assessing the reliability of scales. J. Ext. 37(2), 1999.

  36. Han J., and Kamber M., Data mining: concepts and techniques. Morgan Kaufmann Publishers, 2006.

  37. Wong, M. C. M., Lam, K. F., and Lo, E. C. M., Bayesian analysis of clustered interval-censored data. J. Dent. Res. 84(9):817–821, 2005.

    Article  Google Scholar 

  38. Russell, S., and Norvig, P., Artificial Intelligence: A Modern Approach (3rd. edition). Pearson Prentice Hall, 2009.

  39. Rosenbrock, H. H., An automatic method for finding the greatest or least value of a function. Comput. J. 3(3):175–184, 1960.

    Article  MathSciNet  Google Scholar 

  40. Campbell, M. J., and Gardner, M. J., Statistics in medicine: Calculating confidence intervals for some non-parametric analyses. Br. Med. J. 296(6634):1454–1456, 1988.

    Article  Google Scholar 

  41. Antony, J., Pros and cons of Six Sigma: An academic perspective. TQM Mag. 16(4):303–306, 2004.

    Google Scholar 

  42. Carlin, B. P., and Louis, T. A., Bayes and empirical bays methods for data analysis. J. Stat. Comput. 7(2):153–154, 1997.

    Google Scholar 

Download references

Acknowledgment

Authors thank to the doctors of department of Oral Medicine, Kasturba Medical College and Hospital, Manipal, India for their expert guidance and help during this work and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhagata Chattopadhyay.

Appendices

Appendix 1

Table 5 Generated matrix as a questionnaire template

Appendix 2

Table 6 Filled-up questionnaire: a sample

Appendix 3

Table 7 Regression results of ten datasheets: italicized values indicate significant diseases (D) that are used to develop the Bayesian classifier

Appendix 4

Table 8 ANOVA results

Appendix 5

Table 9 CPT of significant pain parameters and dental diseases obtained from regressions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, S., Davis, R.M., Menezes, D.D. et al. Application of Bayesian Classifier for the Diagnosis of Dental Pain. J Med Syst 36, 1425–1439 (2012). https://doi.org/10.1007/s10916-010-9604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9604-y

Keywords

Navigation